, Volume 25, Issue 1, pp 37–48 | Cite as

Characterization of cellulose crystallinity after enzymatic treatment using Fourier transform infrared spectroscopy (FTIR)

  • Nathan Kruer-Zerhusen
  • Borja Cantero-TubillaEmail author
  • David B. Wilson
Original Paper


Cellulase activity on insoluble cellulose substrates declines as the substrate is modified. The role of structural changes that result in substrate recalcitrance, such as changes to cellulose crystallinity, requires further investigation. Crystallinity of cellulose samples with varying extents of digestion can only be compared meaningfully using a high throughput - Fourier transform infrared spectroscopy (HTS-FTIR) technique when the many variables involved are carefully controlled. Hence, changes to the HTS-FTIR sample preparation methods previously described in literature were necessary in order to obtain clean raw spectra and reliable measures of cellulose crystallinity. The sample preparation methods of residual cellulose after digestion by individual cellulases and a complex cellulase mixture from T. fusca were improved to remove extraneous overlapping signals, provide accurate extent of digestion, and correct errors caused by varying concentrations. These improved preparation methods enabled measurement of crystallinity index values of residual cellulose which did not show a correlation between cellulose crystallinity and the decline in cellulase activity.


Cellulose Crystallinity Recalcitrance Cellulase Thermobifida fusca Fourier Transform Infrared (FTIR) spectroscopy Crystallinity indexes 



The authors thank Prof. Larry Walker from Cornell University. Work was funded by a grant from the US Department of Energy BioEnergy Science Center (BESC). The research was supported by a fellowship from Obra Social “La Caixa”.

Supplementary material

10570_2017_1542_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1212 kb)


  1. Arantes V, Saddler J (2010) Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol Biofuels 3(4):1–11Google Scholar
  2. Auta R, Adamus G, Kwiecien M, Radecka I, Hooley P (2016) Production and characterization of bacterial cellulose before and after enzymatic hydrolysis. Afr J Biotech 16(10):470–482Google Scholar
  3. Boisset C, Chanzy H, Henrissat B, Lamed R, Shoham Y, Bayer E (1999) Digestion of crystalline cellulose substrates by the clostridium thermocellum cellulosome: structural and morphological aspects. Biochem J 340(3):829–835CrossRefGoogle Scholar
  4. Cannella D, Hsieh C, Felby C, Jogensen H (2012) Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content. Biotechnol Biofuels 5(26):1–10Google Scholar
  5. Cao Y, Tan H (2002) Effects of cellulase on the modification of cellulose. Carbohyd Res 337(14):1291–1296CrossRefGoogle Scholar
  6. Chalmers J (2006) Mid-infrared spectroscopy: anomalies, artifacts and common errors. Handb Vib Spectrosc 2327–2347Google Scholar
  7. Chen Y, Stipanovix A, Winter W, Wilson D, Kim Y (2007) Effect of digestion by pure cellulases on crystallinity and average chain length for bacterial and microcrystalline celluloses. Cellulose 14:283–293CrossRefGoogle Scholar
  8. Corgie S, Smith H, Walker L (2011) Enzymatic transformations of cellulose assessed by quantitative high-throughput Fourier transform infrared spectroscopy (QHT-FTIR). Biotechnol Bioeng 108(7):1509–1520CrossRefGoogle Scholar
  9. Donaldson L, Vaidya A (2017) Visualizing recalcitrance by colocalization of cellulase, lignin, and cellulose in pretreated pine biomass using fluorescence microscopy. Sci Rep 7:44386CrossRefGoogle Scholar
  10. Forsberg Z, Mackenzie A, Sorlie M, Rohr A, Helland R, Arvai A, Fijsink V (2014) Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases. Proc Natl Acad Sci USA 111(23):8446–8451CrossRefGoogle Scholar
  11. Hu J, Gourlay K, Arantes V, Van Dyk J, Pribowo A, Saddler J (2015) The accessible cellulose surface influences cellulase synergism during the hydrolysis of lignocellulosic substrates. Chemsuschem 8(5):901–907CrossRefGoogle Scholar
  12. Hurtubise F, Krassig H (1960) Classification of fine structural characteristics in cellulose by infrared spectroscopy. Anal Chem 32(2):177–181CrossRefGoogle Scholar
  13. Igarashi K, Koivula A, Wada M, Kimura S, Penttila M, Samejima M (2009) High speed atomic force microscopy visualizes processive movement of Trichoderma reesei cellobiohydrolase I on crystalline cellulose. J Biol Chem 284(52):36186–36190CrossRefGoogle Scholar
  14. Irwin D, Zhang S, Wilson D (2000) Cloning, expression and characterization of a family 48 exocellulase, Cel48A, from Thermobifida fusca. Eur J Biochem 267(16):4988–4997CrossRefGoogle Scholar
  15. Irwin D, Leathers T, Greene R, Wilson D (2003) Corn fiber hydrolysis by Thermobifida fusca extracellular enzymes. Appl Microbiol Biotechnol 61(4):352–358CrossRefGoogle Scholar
  16. Jeoh T, Santa-Maria MC, O’Dell PJ (2013) Assessing cellulose microfibrillar structure changes due to cellulase action. Carbohyd Polym 97(2):581–586CrossRefGoogle Scholar
  17. King B, Donnelly M, Bergstrom G, Walker L, Gibson D (2009) An optimized microplate assay system for quantitative evaluation of plant cell wall-degrading enzyme activity of fungal culture extracts. Biotechnol Bioeng 102(4):1033–1044CrossRefGoogle Scholar
  18. Kostylev M, Wilson D (2011) Determination of the catalytic base in family 48 glycosyl hydrolases. Appl Environ Microbiol 77(17):6274–6276CrossRefGoogle Scholar
  19. Kostylev M, Wilson D (2013) Two-parameter kinetic model based on a time-dependent activity coefficient accurately describes enzymatic cellulose digestion. Biochemistry 52(33):5656–5664CrossRefGoogle Scholar
  20. Kostylev M, Wilson D (2014) A distinct model of synergism between a processive endocellulase (TfCel9A) and an exocellulase (TfCel48A) from Thermobifida fusca. Appl Environ Microbiol 80(1):339–344CrossRefGoogle Scholar
  21. Kostylev M, Alahuhta M, Chen M, Brunecky R, Himmel M, Lunin V, Wilson D (2014) Cel48A from Thermobifida fusca: structure and site directed mutagenesis of key residues. Biotechnol Bioeng 111(4):664–673CrossRefGoogle Scholar
  22. Lever M (1977) Carbohydrate determination with 4-hydroxybenzoic acid hydrazide (PAHBAH): effect of bismuth on the reaction. Anal Biochem 81(1):21–27CrossRefGoogle Scholar
  23. Li Y, Irwin D, Wilson D (2010) Increased crystalline cellulose activity via combinations of amino acid changes in the family 9 catalytic domain and family 3c cellulose binding module of Thermobifida fusca Cel9a. Appl Environ Microbiol 76:2582–2588CrossRefGoogle Scholar
  24. Lionetto F, Del Sole R, Cannoletta D, Vasapollo G, Manffezzoli A (2012) Monitoring wood degradation during weathering by cellulose crystallinity. Materials 5(10):1910–1922CrossRefGoogle Scholar
  25. Mansfield S, Meder R (2003) Cellulose hydrolysis–the role of monocomponent cellulases in crystalline cellulose degradation. Cellulose 10(2):159–169CrossRefGoogle Scholar
  26. Mitchell A (1990) Second-derivative FT-IR spectra of native celluloses. Carbohyd Res 197:53–60CrossRefGoogle Scholar
  27. Nada A, Kamel S, El-Sahkhawy M (2000) Thermal behavior and infrared spectroscopy of cellulose carbamates. Polym Degrad Stab 70(3):347–355CrossRefGoogle Scholar
  28. Nelson M, O’Connor R (1964) Relation of certain infrared bands to cellulose crystallinity and crystal latticed type. Part I. Spectra of lattices types I, II, III, and of amorphous cellulose. J Appl Polym Sci 8(3):1311–1324CrossRefGoogle Scholar
  29. Olsen S, Borch K, Cruys-Bagger N, Westh P (2014) The role of product inhibition as a yield- determining factor in enzymatic high-solid hydrolysis of pretreated corn stover. Appl Biochem Biotechnol 174(1):146–155CrossRefGoogle Scholar
  30. Park S, Baker J, Himmel M, Parilla P, Johnson D (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3(10):1–10Google Scholar
  31. Peciulyte A, Kiskis J, Larson P, Olssson L, Enejder A (2016) Visualization of structural changes in cellulosic substrates during enzymatic hydrolysis using multimodal nonlinear microscopy. Cellulose 23:1521–1536CrossRefGoogle Scholar
  32. Väljamäe P, Slid V, Pettersson G, Johansson G (1998) The initial kinetics of hydrolysis by cellobiohydrolases I and II is consistent with a cellulose surface-erosion model. Eur J Biochem 253(2):469–475CrossRefGoogle Scholar
  33. Väljamäe P, Kipper K, Pettersson G, Johansson G (2003) Synergistic cellulose hydrolysis can be described in terms of fractal-like kinetics. Biotechnol Bioeng 84(2):254–257CrossRefGoogle Scholar
  34. Xu F, Ding H (2007) A new kinetic model for heterogeneous (or spatially confined) enzymatic catalysis: contributions from the fractal and jamming (overcrowding) effects. Appl Catal A 317(1):70–81CrossRefGoogle Scholar
  35. Zhang S, Wolfgang D, Wilson D (1999) Substrate heterogeneity causes the nonlinear kinetics of insoluble cellulose hydrolysis. Biotechnol Bioeng 66(1):35–41CrossRefGoogle Scholar
  36. Zhang S, Irwin D, Wilson D (2000) Site-directed mutation of non-catalytic residues of Thermobifida fusca exocellulase Cel6B. Eur J Biochem 267(11):3101–3115CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Nathan Kruer-Zerhusen
    • 1
  • Borja Cantero-Tubilla
    • 2
    Email author
  • David B. Wilson
    • 1
  1. 1.Department of Molecular Biology and GeneticsCornell UniversityIthacaUSA
  2. 2.Robert Frederick Smith School of Chemical and Biomolecular EngineeringCornell UniversityIthacaUSA

Personalised recommendations