Skip to main content
Log in

Synthesis of cellulose acetate propionate and cellulose acetate butyrate in a CO2/DBU/DMSO system

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The reversible reaction of the hydroxyl groups in cellulose with CO2 in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) results in a rapid and effective derivative dissolution of cellulose in DMSO, by which a series of cellulose acetate propionate (CAP) and cellulose acetate butyrate (CAB) with various degrees of substitution (DS) were synthesized controllably without adding external catalysts. Wherein DBU not only achieves the dissolution of cellulose, but also acts as an efficient organocatalyst for the subsequent cellulose derivatization. The DS of CAB and CAP can be tuned by changing the feed molar ratio of propionic (butyric) anhydride/acetic anhydride and the reaction temperature. The structural and thermal properties of the products were characterized by several analytical techniques including NMR, FT-IR, and TGA. The CO2/DBU/DMSO dissolution system provides a new platform for controllable synthesis of mixed cellulose esters with high efficiency under mild conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DBU:

1,8-Diazabicyclo[5.4.0]undec-7-ene

CAP:

Cellulose acetate propionate

CAB:

Cellulose acetate butyrate

DS:

Degrees of substitution

CA:

Cellulose acetate

CP:

Cellulose propionate

AGU:

Anhydroglucose unit

TGA:

Thermo gravimetric analysis

DSC:

Differential scanning calorimetry

FTIR:

Fourier transform infrared spectrometer

AmimCl:

1-Allyl-3-methylimidazolium chloride

BmimCl:

1-Buty-3-methylimidazolium chloride

DMAP:

4-Dimethylaminopyridine

References

  • Abderahmane E, El Barkany S, Hassan A, Abdel-Karim M (2011) Synthesis and characterization of the new cellulose derivative films based on the hydroxyethyl cellulose prepared from “Stipa Tenacissima” cellulose of Eastern Morocco. I. Solubility study. J Appl Polym Sci 122:2952–2965

    Article  CAS  Google Scholar 

  • Ass BAP, Ciacco GT, Frollini E (2006) Cellulose acetates from linters and sisal: correlation between synthesis conditions in DMAc/LiCl and product properties. Bioresour Technol 97:1696–1702

    Article  CAS  Google Scholar 

  • Biganska O, Navard P (2005) Kinetics of precipitation of cellulose from cellulose-NMMO-water solutions. Biomacromolecules 6:1948–1953

    Article  CAS  Google Scholar 

  • Buchanan CM, Edgar KJ, Wilson AK (1991) Preparation and characterization of cellulose monoacetates: the relationship between structure and water solubility. Macromolecules 24:169–176

    Google Scholar 

  • Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci 5:539–548

    Article  CAS  Google Scholar 

  • Cai J, Zhang L, Zhou J, Qi H, Chen H, Kondo T, Chen X, Chu B (2007) Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure and properties. Adv Mater 19:821–825

    Article  CAS  Google Scholar 

  • Cao Y, Wu J, Meng T, Zhang J, He J, Li H, Zhang Y (2007) Acetone-soluble cellulose acetates prepared by one-step homogeneous acetylation of cornhusk cellulose in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl). Carbohydr Polym 69:665–672

    Article  CAS  Google Scholar 

  • Caruso RA, Schattka JH (2000) Cellulose acetate templates for porous inorganic network fabrication. Adv Mater 12:1921–1923

    Article  CAS  Google Scholar 

  • Chen X, Liu Y, Qin F, Kong L, Zou H (2003) Synthesis of covalently bonded cellulose derivative chiral stationary phases with a bifunctional reagent of 3-(triethoxysilyl)propyl isocyanate. J Chromatogr A 1010:185–194

    Article  CAS  Google Scholar 

  • Cheng HN, Dowd MK, Shogren RL, Biswas A (2011) Conversion of cotton byproducts to mixed cellulose esters. Carbohydr Polym 86:1130–1136

    Article  CAS  Google Scholar 

  • Chou WL, Yu DG, Yang MC (2005) The preparation and characterization of silver-loading cellulose acetate hollow fiber membrane for water treatment. Polym Adv Technol 16:600–607

    Article  CAS  Google Scholar 

  • Chrapava S, Touraud D, Rosenau T, Potthast A, Kunz W (2003) The investigation of the influence of water and temperature on the LiCl/DMAc/cellulose system. PCCP 5:1842–1847

    Article  CAS  Google Scholar 

  • Dan A, Nishio Y (2010) Phosphorylated cellulose propionate derivatives as thermoplastic flame resistant/retardant materials: influence of regioselective phosphorylation on their thermal degradation behaviour. Cellulose 17:963–976

    Article  Google Scholar 

  • Deng M, Zhou Q, Du A, Kasteren JV, Wang Y (2009) Preparation of nanoporous cellulose foams from cellulose-ionic liquid solutions. Mater Lett 63:1851–1854

    Article  CAS  Google Scholar 

  • Ducéré V, Bernès A, Lacabanne C (2005) A capacitive humidity sensor using cross-linked cellulose acetate butyrate. Sens Act B Chem 106:331–334

    Article  Google Scholar 

  • Fischer S, Thümmler K, Pfeiffer K, Liebert T, Heinze T (2002) Evaluation of molten inorganic salt hydrates as reaction medium for the derivatization of cellulose. Cellulose 9:293–300

    Article  CAS  Google Scholar 

  • Fischer S, Leipner H, Thümmler K, Brendler E, Peters J (2003) Inorganic molten salts as solvents for cellulose. Cellulose 10:227–236

    Article  CAS  Google Scholar 

  • Gupta KM, Hu Z, Jiang J (2013a) Cellulose regeneration from a cellulose/ionic liquid mixture: the role of anti-solvents. RSC Adv 3:12794–12801

    Article  CAS  Google Scholar 

  • Gupta KM, Hu Z, Jiang J (2013b) Molecular insight into cellulose regeneration from a cellulose/ionic liquid mixture: effects of water concentration and temperature. RSC Adv 3:4425–4433

    Article  CAS  Google Scholar 

  • Heinze T, Liebert T (2001) Unconventional methods in cellulose functionalization. Prog Polym Sci 26:1689–1762

    Article  CAS  Google Scholar 

  • Huang K, Wang B, Cao Y, Li H, Wang J, Lin W, Mu C, Liao D (2011) Homogeneous preparation of cellulose acetate propionate (CAP) and cellulose acetate butyrate (CAB) from sugarcane bagasse cellulose in ionic liquid. J Agric Food Chem 59:5376–5381

    Article  CAS  Google Scholar 

  • Hwang IT, Lee SA, Hwang JS, Lee KI (2011) A facile synthesis of highly functionalized 4-arylcoumarins via Kostanecki reactions mediated by DBU. Molecules 16:6313–6321

    Article  CAS  Google Scholar 

  • Jeon GW, An JE, Jeong YG (2012) High performance cellulose acetate propionate composites reinforced with exfoliated graphene. Compos Part B Eng 43:3412–3418

    Article  CAS  Google Scholar 

  • Kazakov OI, Datta PP, Isajani M, Kiesewetter ET, Kiesewetter MK (2014) Cooperative hydrogen-bond pairing in organocatalytic ring-opening polymerization. Macromolecules 47:7463–7468

    Article  CAS  Google Scholar 

  • Khan S, Ghosh AK, Ramachandhran V, Bellare J, Hanra MS, Trivedi MK, Misra BM (2000) Synthesis and characterization of low molecular weight cut off ultrafiltration membranes from cellulose propionate polymer. Desalination 128:57–66

    Article  CAS  Google Scholar 

  • Li J, Zhang LP, Peng F, Bian J, Yuan TQ, Xu F, Sun RC (2009a) Microwave-assisted solvent-free acetylation of cellulose with acetic anhydride in the presence of iodine as a catalyst. Molecules 14:3551–3566

    Article  CAS  Google Scholar 

  • Li WY, Jin AX, Liu CF, Sun RC, Zhang AP, Kennedy JF (2009b) Homogeneous modification of cellulose with succinic anhydride in ionic liquid using 4-dimethylaminopyridine as a catalyst. Carbohydr Polym 78:389–395

    Article  CAS  Google Scholar 

  • Li X, Wang KY, Helmer B, Chung TS (2012) Thin-film composite membranes and formation mechanism of thin-film layers on hydrophilic cellulose acetate propionate substrates for forward osmosis processes. Ind Eng Chem Res 51:10039–10050

    Article  CAS  Google Scholar 

  • Liu CF, Zhang AP, Li WY, Yue FX, Sun RC (2009) Homogeneous modification of cellulose in ionic liquid with succinic anhydride using N-bromosuccinimide as a catalyst. J Agric Food Chem 57:1814–1820

    Article  CAS  Google Scholar 

  • Liu CF, Zhang AP, Li WY, Yue FX, Sun RC (2010) Succinoylation of cellulose catalyzed with iodine in ionic liquid. Ind Crops Prod 31:363–369

    Article  CAS  Google Scholar 

  • Luan Y, Zhang J, Zhan M, Wu J, Zhang J, He J (2013) Highly efficient propionylation and butyralation of cellulose in an ionic liquid catalyzed by 4-dimethylminopyridine. Carbohydr Polym 92:307–311

    Article  CAS  Google Scholar 

  • Mail WL, Lan WM, Chen D, Liu C (2011) DMAP-catalyzed phthalylation of cellulose with phthalic anhydride in [Bmim]Cl. BioResources 6:2375–2385

    Google Scholar 

  • Meng X, Edgar KJ (2015) Synthesis of amide-functionalized cellulose esters by olefin cross-metathesis. Carbohydr Polym 132:565–573

    Article  CAS  Google Scholar 

  • Meng X, Matson JB, Edgar KJ (2014a) Olefin cross-metathesis as a source of polysaccharide derivatives: cellulose ω-carboxyalkanoates. Biomacromolecules 15:177–187

    Article  CAS  Google Scholar 

  • Meng X, Matson JB, Edgar KJ (2014b) Olefin cross-metathesis, a mild, modular approach to functionalized cellulose esters. Polym Chem 5:7021–7033

    Article  CAS  Google Scholar 

  • Meng X, York EA, Liu S, Edgar KJ (2015) Hydroboration–oxidation: a chemoselective route to cellulose ω-hydroxyalkanoate esters. Carbohydr Poly 133:262–269

    Article  CAS  Google Scholar 

  • Meng X, Roy Choudhury S, Edgar KJ (2016) Multifunctional cellulose esters by olefin cross-metathesis and thiol-Michael addition. Polym Chem 7:3848–3856

    Article  CAS  Google Scholar 

  • Ostlund A, Lundberg D, Nordstierna L, Holmberg K, Nydén M (2009) Dissolution and gelation of cellulose in TBAF/DMSO solutions: the roles of fluoride ions and water. Biomacromolecules 10:2401–2407

    Article  Google Scholar 

  • Park JW, Doi Y, Iwata T (2005) Unique crystalline orientation of poly[(R)-3-hydroxybutyrate]/cellulose propionate blends under uniaxial drawing. Macromolecules 38:2345–2354

    Article  CAS  Google Scholar 

  • Peschel D, Zhang K, Aggarwal N, Brendler E, Fischer S, Groth T (2010) Synthesis of novel celluloses derivatives and investigation of their mitogenic activity in the presence and absence of FGF2. Acta Biomater 6:2116–2125

    Article  CAS  Google Scholar 

  • Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6728

    Article  CAS  Google Scholar 

  • Son WK, Ji HY, Park WH (2006) Antimicrobial cellulose acetate nanofibers containing silver nanoparticles. Carbohydr Polym 65:430–434

    Article  CAS  Google Scholar 

  • Song Y, Sun Y, Zhang X, Zhou J, Zhang L (2008) Homogeneous quaternization of cellulose in NaOH/urea aqueous solutions as gene carriers. Biomacromol 9:2259–2264

    Article  CAS  Google Scholar 

  • Song L, Yang Y, Xie H, Liu E (2015) Cellulose dissolution and in situ grafting in a reversible system using an organocatalyst and carbon dioxide. Chemsuschem 8:3217–3221

    Article  CAS  Google Scholar 

  • Su J, Qian Y, Teo JF, Chung TS (2010) Cellulose acetate nanofiltration hollow fiber membranes for forward osmosis processes. J Membr Sci 355:36–44

    Article  CAS  Google Scholar 

  • Sugimura K, Teramoto Y, Nishio Y (2013) Blend miscibility of cellulose propionate with poly(N-vinyl pyrrolidone-co-methyl methacrylate). Carbohydr Polym 98:532–541

    Article  CAS  Google Scholar 

  • Takaragi A, Minoda M, Miyamoto T, Hai QL, Li NZ (1999) Reaction characteristics of cellulose in the LiCl/1,3-dimethyl-2-imidazolidinone solvent system. Cellulose 6:93–102

    Article  CAS  Google Scholar 

  • Tosh B, Saikia CN, Dass NN (2000) Homogeneous esterification of cellulose in the lithium chloride–N,N-dimethylacetamide solvent system: effect of temperature and catalyst. Carbohydr Res 327:345–352

    Article  CAS  Google Scholar 

  • Wu J, Zhang J, Zhang H, He J, Ren Q, Guo M (2004) Homogeneous acetylation of cellulose in a new ionic liquid. Biomacromol 5:266–268

    Article  CAS  Google Scholar 

  • Xie H, Yu X, Yang Y, Zhao ZK (2014) Capturing CO2 for cellulose dissolution. Green Chem 16:2422–2427

    Article  CAS  Google Scholar 

  • Yang Y, Xie H, Liu E (2014) Acylation of cellulose in reversible ionic liquids. Green Chem 16:3018–3023

    Article  CAS  Google Scholar 

  • Yang Y, Song L, Peng C, Liu E, Xie H (2015) Activating cellulose via its reversible reaction with CO2 in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene for efficient synthesis of cellulose acetate. Green Chem 17:2758–2763

    Article  CAS  Google Scholar 

  • Yu N, Gray GR (1998) Analysis of the positions of substitution of acetate and propionate groups in cellulose acetate–propionate by the reductive-cleavage method. Carbohydr Res 313:29–36

    Article  CAS  Google Scholar 

  • Yu Y, Miao J, Jiang Z, Sun H, Zhang L (2016) Cellulose esters synthesized using a tetrabutylammonium acetate and dimethylsulfoxide solvent system. Appl Phys A 122:1–8

    Google Scholar 

  • Zhang C, Price LM, Daly WH (2006) Synthesis and characterization of a trifunctional aminoamide cellulose derivative. Biomacromolecules 7:139–145

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 31270637 and 21574030); Science and Technology Department of Guizhou Province (Grant No. Natural Science Key Fund [2016]1402) (Grant No. Platform and Talents [2016]5652); Open research fund of Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education of China (08031339); Foundation of State Key Laboratory of Coal Conversion (Grant No. J17-18-907); Excellent Scientific Innovative Talent Programme from Education Department of Guizhou Province (Grant No. KY[2015]479).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibo Xie.

Additional information

Qinqin Xu and Longchu Song have contributed equally to the work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 222 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Song, L., Zhang, L. et al. Synthesis of cellulose acetate propionate and cellulose acetate butyrate in a CO2/DBU/DMSO system. Cellulose 25, 205–216 (2018). https://doi.org/10.1007/s10570-017-1539-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1539-8

Keywords

Navigation