Skip to main content

Esterification of bagasse cellulose with metal salts as efficient catalyst in mechanical activation-assisted solid phase reaction system

Abstract

The present study focused on investigating the catalytic mechanism of metal salts (sodium hypophosphite, sodium bisulfate and ammonium ferric sulfate) for esterification of bagasse cellulose carried out by mechanical activation-assisted solid phase reaction in a stirring ball mill. FTIR analysis of the products confirmed that these metal salts could catalyze the esterification of cellulose. XRD, SEM, FTIR, and 31P-NMR analyses of different samples indicated a synergistic effect between metal salt and ball milling, and the presence of metal salts enhanced the destruction on crystal structure of cellulose by mechanical force. The catalytic mechanism of three metal salts was difference: sodium bisulfate and ammonium ferric sulfate belonged to the catalytic mechanism of protonic acid and Lewis acid, respectively, while the catalytic mechanism of sodium hypophosphite was considered as that it could react with maleic acid to form active intermediates under ball milling.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Scheme 2

References

  • Abhilash PC, Singh N (2008) Influence of the application of sugarcane bagasse on lindane (γ-HCH) mobility through soil column: implication for biotreatment. Bioresour Technol 99(18):8961–8966

    CAS  PubMed  Article  Google Scholar 

  • Barbosa SL, Dabdoub MJ, Hurtado GR, Klein SI, Baroni ACM, Cunha C (2006) Solvent free esterification reactions using Lewis acids in solid phase catalysis. Appl Catal A-Gen 313(2):146–150

    CAS  Article  Google Scholar 

  • Bassan IAL, Nascimento DR, San Gil RAS, Pais Da Silva MI, Moreira CR, Gonzalez WA Jr, Faro AC, Onfroy T, Lachter ER (2013) Esterification of fatty acids with alcohols over niobium phosphate. Fuel Process Technol 106:619–624

    CAS  Article  Google Scholar 

  • Cao X, Sun S, Peng X, Zhong L, Sun R, Jiang D (2013) Rapid synthesis of cellulose esters by transesterification of cellulose with vinyl esters under the catalysis of NaOH or KOH in DMSO. J Agric Food Chem 61(10):2489–2495

    CAS  PubMed  Article  Google Scholar 

  • Charmot A, Katz A (2010) Unexpected phosphate salt-catalyzed hydrolysis of glycosidic bonds in model disaccharides: cellobiose and maltose. J Catal 276(1):1–5

    CAS  Article  Google Scholar 

  • Chundawat SPS, Bellesia G, Uppugundla N, Da Costa Sousa L, Gao D, Cheh AM, Agarwal UP, Bianchetti CM, Phillips GN, Langan P, Balan V, Gnanakaran S, Dale BE (2011) Restructuring the crystalline cellulose hydrogen bond network enhances its depolymerization rate. J Am Chem Soc 133(29):11163–11174

    CAS  PubMed  Article  Google Scholar 

  • Condron LM, Goh KM, Newman RH (1985) Nature and distribution of soil phosphorus as revealed by a sequential extraction method followed by 31P nuclear magnetic resonance analysis. Eur J Soil Sci 36(2):199–207

    CAS  Article  Google Scholar 

  • Cr Py L, Chaveriat L, Banoub J, Martin P, Joly N (2009) Synthesis of cellulose fatty esters as plastics-influence of the degree of substitution and the fatty chain length on mechanical properties. ChemSusChem 2(2):165–170

    Article  Google Scholar 

  • Crawford D, Casaban J, Haydon R, Giri N, McNally T, James SL (2015) Synthesis by extrusion: continuous, large-scale preparation of MOFs using little or no solvent. Chem Sci 6(3):1645–1649

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Da Silva ASA, Inoue H, Endo T, Yano S, Bon EPS (2010) Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. Bioresour Technol 101(19):7402–7409

    PubMed  Article  Google Scholar 

  • Dankovich TA, Hsieh Y (2007) Surface modification of cellulose with plant triglycerides for hydrophobicity. Cellulose 14(5):469–480

    CAS  Article  Google Scholar 

  • Fischer S, Leipner H, Thummler K, Brendler E, Peters J (2003) Inorganic molten salts as solvents for cellulose. Cellulose 10(3):227–236

    CAS  Article  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896

    CAS  Article  Google Scholar 

  • Fumagalli M, Ouhab D, Boisseau SM, Heux L (2013) Versatile gas-phase reactions for surface to bulk esterification of cellulose microfibrils aerogels. Biomacromol 14(9):3246–3255

    CAS  Article  Google Scholar 

  • Gillingham EL, Lewis DM, Voncina B (1999) An FTIR study of anhydride formation on heating butane-tetracarboxylic acid in the presence of various catalysts. Text Res J 69(12):949–955

    CAS  Article  Google Scholar 

  • Granstrom M, Kavakka J, King A, Majoinen J, Makela V, Helaja J, Hietala S, Virtanen T, Maunu S, Argyropoulos DS, Kilpelainen I (2008) Tosylation and acylation of cellulose in 1-allyl-3-methylimidazolium chloride. Cellulose 15(3):481–488

    Article  Google Scholar 

  • Granstrom M, Paakko MKN, Jin H, Kolehmainen E, Kilpelainen I, Ikkala O (2011) Highly water repellent aerogels based on cellulose stearoyl esters. Polym Chem 2(8):1789–1796

    CAS  Article  Google Scholar 

  • Hu H, Li H, Zhang Y, Chen Y, Huang Z, Huang A, Zhu Y, Qin X, Lin B (2015) Green mechanical activation-assisted solid phase synthesis of cellulose esters using a co-reactant: effect of chain length of fatty acids on reaction efficiency and structure properties of products. RSC Adv 5(27):20656–20662

    CAS  Article  Google Scholar 

  • Huang K, Wang B, Cao Y, Li H, Wang J, Lin W, Mu C, Liao D (2011) Homogeneous preparation of cellulose acetate propionate (CAP) and cellulose acetate butyrate (CAB) from sugarcane bagasse cellulose in ionic liquid. J Agric Food Chem 59(10):5376–5381

    CAS  Article  Google Scholar 

  • Huang Z, Tan Y, Zhang Y, Liu X, Hu H, Qin Y, Huang H (2012a) Direct production of cellulose laurate by mechanical activation-strengthened solid phase synthesis. Bioresour Technol 118:624–627

    CAS  Article  Google Scholar 

  • Huang Z, Wang N, Zhang Y, Hu H, Luo Y (2012b) Effect of mechanical activation pretreatment on the properties of sugarcane bagasse/poly(vinyl chloride) composites. Compos part A-Appl S 43(1):114–120

    Article  Google Scholar 

  • James SL, Adams CJ, Bolm C, Braga D, Collier P, Friscic T, Grepioni F, Harris KD, Hyett G, Jones W, Krebs A, Mack J, Maini L, Orpen AG, Parkin IP, Shearouse WC, Steed JW, Waddell DC (2012) Mechanochemistry: opportunities for new and cleaner synthesis. Chem Soc Rev 41(1):413–447

    CAS  PubMed  Article  Google Scholar 

  • Jr. Karnitz O, Alves Gurgel LV, Perin De Melo JC, Botaro VR, Sacramento Melo TM, de Freitas Gil RP, Gil LF (2007) Adsorption of heavy metal ion from aqueous single metal solution by chemically modified sugarcane bagasse. Bioresour Technol 98(6):1291–1297

    Article  Google Scholar 

  • Kim D, Moreno N, Nunes SP (2016) Fabrication of polyacrylonitrile hollow fiber membranes from ionic liquid solutions. Polym Chem 7(1):113–124

    CAS  Article  Google Scholar 

  • Kondo T (1997) The assignment of IR absorption bands due to free hydroxyl groups in cellulose. Cellulose 4(4):281–292

    CAS  Article  Google Scholar 

  • Lam E, Luong JHT (2014) Carbon materials as catalyst supports and catalysts in the transformation of biomass to fuels and chemicals. ACS Catal 4(10):3393–3410

    CAS  Article  Google Scholar 

  • Leng Y, Wang J, Zhu D, Ren X, Ge H, Shen L (2009) Heteropolyanion-based ionic liquids: reaction-induced self-separation catalysts for esterification. Angew Chem Int Edit 48(1):168–171

    CAS  Article  Google Scholar 

  • Morales-delaRosa S, Campos-Martin JM, Fierro JLG (2014) Complete chemical hydrolysis of cellulose into fermentable sugars through ionic liquids and antisolvent pretreatments. ChemSusChem 7(12):3467–3475

    CAS  PubMed  Article  Google Scholar 

  • Morán JI, Alvarez VA, Cyras VP, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15(1):149–159

    Article  Google Scholar 

  • Morris CE, Morris NM, TraskMorrell BJ (1996) Interaction of meso-1,2,3,4-butanetetracarboxylic acid with phosphorus-containing catalysts for esterification cross-linking of cellulose. Ind Eng Chem Res 35(3):950–953

    CAS  Article  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082

    CAS  PubMed  Article  Google Scholar 

  • Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125(47):14300–14306

    CAS  PubMed  Article  Google Scholar 

  • Nowakowski DJ, Woodbridge CR, Jones JM (2008) Phosphorus catalysis in the pyrolysis behaviour of biomass. J Anal Appl Pyrol 83(2):197–204

    CAS  Article  Google Scholar 

  • Patyk E, Katrusiak A (2015) Transformable H-bonds and conformation in compressed glucose. Chem Sci 6(3):1991–1995

    CAS  PubMed  Article  Google Scholar 

  • Román-Leshkov Y, Davis ME (2011) Activation of carbonyl-containing molecules with solid Lewis acids in aqueous media. ACS Catal 1(11):1566–1580

    Article  Google Scholar 

  • Rowell RM (1994) Acetyl distribution in acetylated whole wood and reactivity of isolated wood cell-wall components to acetic anhydried. Wood Fiber Sci 26(1):11–18

    CAS  Google Scholar 

  • Saddawi A, Jones JM, Williams A (2012) Influence of alkali metals on the kinetics of the thermal decomposition of biomass. Fuel Process Technol 104:189–197

    CAS  Article  Google Scholar 

  • Sehaqui H, Kulasinski K, Pfenninger N, Zimmermann T, Tingaut P (2017) Highly carboxylated cellulose nanofibers via succinic anhydride esterification of wheat fibers and facile mechanical disintegration. Biomacromol 18(1):242–248

    CAS  Article  Google Scholar 

  • Sun RC, Tomkinson J, Wang SQ, Zhu W (2000) Characterization of lignins from wheat straw by alkaline peroxide treatment. Polym Degra. Stabil 67(1):101–109

    CAS  Article  Google Scholar 

  • Uschanov P, Johansson L, Maunu SL, Laine J (2011) Heterogeneous modification of various celluloses with fatty acids. Cellulose 18(2):393–404

    CAS  Article  Google Scholar 

  • Zhang W, Liang M, Lu C (2007) Morphological and structural development of hardwood cellulose during mechanochemical pretreatment in solid state through pan-milling. Cellulose 14(5):447–456

    CAS  Article  Google Scholar 

  • Zhang Y, Gan T, Luo Y, Zhao X, Hu H, Huang Z, Huang A, Qin X (2014) A green and efficient method for preparing acetylated cassava stillage residue and the production of all-plant fibre composites. Compos Sci Technol 102:139–144

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This research was supported by National Natural Science Foundation of China (Nos. 51463003 and 21666005), the Guangxi Science and Technology Plan Project of China (Grant No. AB16380305), Guangxi Distinguished Experts Special Foundation of China, and the Scientific Research Foundation of Guangxi University (Grant No. XJPZ160713).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanjuan Zhang or Zuqiang Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 42 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gan, T., Zhang, Y., Su, Y. et al. Esterification of bagasse cellulose with metal salts as efficient catalyst in mechanical activation-assisted solid phase reaction system. Cellulose 24, 5371–5387 (2017). https://doi.org/10.1007/s10570-017-1524-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1524-2

Keywords

  • Cellulose
  • Esterification
  • Metal salt
  • Catalytic mechanism
  • Mechanical activation