Skip to main content

Reinforcement of cellulose nanofibers in polyacrylamide gels

Abstract

Cellulose nanofibers (CNFs) have emerged as a promising nanofiller for effective reinforcement of nanocomposites due to their excellent mechanical properties. In this study, CNFs were fabricated by a simple grinding method and used to strengthen polyacrylamide (PAM) gels through in situ free radical polymerization. The morphology, compression properties, and chemical structure of the prepared gels were investigated. The results showed that large amounts of nanofibers embedded inside the PAM matrix and formed network structure by increasing the CNF content. Significantly, PAM/CNF gel with 5 wt% CNF exhibited highly improved compression strength by 6.8-fold as compared to that of pure PAM gel. The FTIR analysis indicated that hydrogen bondings between CNF and PAM chains mainly contributed to the superior mechanical properties of the hybrid gels. In summary, this study provides a novel alternative approach for preparing tough composite gels by combing rigid CNF and soft polymer and extending the application of biomedical load-bearing gel materials such as artificial cartilage and other soft tissues.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

References

  1. Abe K, Yano H (2011) Formation of hydrogels from cellulose nanofibers. Carbohyd Polym 85:733–737

    CAS  Article  Google Scholar 

  2. Abe K, Yano H (2012) Cellulose nanofiber-based hydrogels with high mechanical strength. Cellulose 19:1907–1912

    CAS  Article  Google Scholar 

  3. Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278

    CAS  Article  Google Scholar 

  4. Chen C, Li D, Yano H, Abe K (2014) Dissolution and gelation of α-chitin nanofibers using a simple NaOH treatment at low temperatures. Cellulose 21:3339–3346

    CAS  Article  Google Scholar 

  5. Chen C, Yano H, Li D, Abe K (2015) Preparation of high-strength α-chitin nanofiber-based hydrogels under mild conditions. Cellulose 22:2543–2550

    CAS  Article  Google Scholar 

  6. Fox J et al (2012) High-strength, healable, supramolecular polymer nanocomposites. J Am Chem Soc 134:5362–5368

    CAS  Article  Google Scholar 

  7. Hagiwara Y, Putra A, Kakugo A, Furukawa H, Gong JP (2009) Ligament-like tough double-network hydrogel based on bacterial cellulose. Cellulose 17:93–101

    Article  Google Scholar 

  8. Haraguchi K (2011) Synthesis and properties of soft nanocomposite materials with novel organic/inorganic network structures. Polym J 43:223–241

    CAS  Article  Google Scholar 

  9. He C, Jiao K, Zhang X, Xiang M, Li Z, Wang H (2011) Nanoparticles, microgels and bulk hydrogels with very high mechanical strength starting from micelles. Soft Matter 7:2943

    CAS  Article  Google Scholar 

  10. Huang B, Lu Q, Tang L (2016) Research progress of nanocellulose manufacture and application. J For Eng 1:1–9

    Google Scholar 

  11. Jiang F, Zhang Y, Wang Z et al (2015) Combination of magnetic and enhanced mechanical properties for copolymer-grafted magnetite composite thermoplastic elastomers. ACS Appl Mater Interfaces 7(19):10563–10575

    CAS  Article  Google Scholar 

  12. Kurihara T, Isogai A (2013) Properties of poly(acrylamide)/TEMPO-oxidized cellulose nanofibril composite films. Cellulose 21:291–299

    Article  Google Scholar 

  13. Kurihara T, Isogai A (2014) The effect of electric charge density of polyacrylamide (PAM) on properties of PAM/cellulose nanofibril composite films. Cellulose 22:499–506

    Article  Google Scholar 

  14. Kurihara T, Isogai A (2015) Mechanism of TEMPO-oxidized cellulose nanofibril film reinforcement with poly(acrylamide). Cellulose 22:2607–2617

    CAS  Article  Google Scholar 

  15. Ma L, Xue X, Wang S, Zhang Y (2016) Preparing nanocellulose whisker reinforced ABS composites by liquid mixing method. J For Eng 1:91–95

    Google Scholar 

  16. Nishino T, Takano K, Nakamae K (1995) Elastic modulus of the crystalline regions of cellulose polymorphs. J Polym Sci Part B Polym Phys 33(11):1647–1651

    CAS  Article  Google Scholar 

  17. Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2(4):728–765

    CAS  Article  Google Scholar 

  18. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494

    Article  Google Scholar 

  19. Wang Z, Zhang Y, Yuan L et al (2016) Biomass approach toward robust, sustainable, multiple-shape-memory materials. ACS Macro Lett 5(5):602–606

    CAS  Article  Google Scholar 

  20. Xu X, Liu F, Jiang L et al (2013) Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5(8):2999–3009

    CAS  Article  Google Scholar 

  21. Yang J, Han C-R, Duan J-F, Ma M-G, Zhang X-M, Xu F, Sun R-C (2013) Synthesis and characterization of mechanically flexible and tough cellulose nanocrystals–polyacrylamide nanocomposite hydrogels. Cellulose 20:227–237

    CAS  Article  Google Scholar 

  22. Yang J, Han C-R, Zhang X-M, Xu F, Sun R-C (2014) Cellulose nanocrystals mechanical reinforcement in composite hydrogels with multiple cross-links: correlations between dissipation properties and deformation mechanisms. Macromolecules 47:4077–4086

    CAS  Article  Google Scholar 

  23. Zhao X (2014) Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. Soft Matter 10:672–687

    CAS  Article  Google Scholar 

  24. Zhou C, Wu Q (2011) A novel polyacrylamide nanocomposite hydrogel reinforced with natural chitosan nanofibers. Colloids Surf B 84:155–162

    CAS  Article  Google Scholar 

  25. Zhou C, Wu Q, Yue Y, Zhang Q (2011) Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels. J Colloid Interface Sci 353:116–123

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Key Laboratory of Bio-based Material Science and Technology (Northeast Forestry University), Ministry of Education (SWZCL2016-07), Natural Science Foundation of Jiangsu Province (CN) (No. BK20170925 20150875), National Natural Science Foundation of China (NSFC 31370557 31670555), and Innovation Fund for Young Scholars of Nanjing Forestry University (201701).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dagang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Wang, H., Li, S. et al. Reinforcement of cellulose nanofibers in polyacrylamide gels. Cellulose 24, 5487–5493 (2017). https://doi.org/10.1007/s10570-017-1512-6

Download citation

Keywords

  • Cellulose nanofibers
  • Polyacrylamide gels
  • Reinforcement
  • Compression properties