Skip to main content
Log in

Cellulose laurate ester aerogel as a novel absorbing material for removing pollutants from organic wastewater

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose laurate ester (CE) aerogels were successfully prepared by regeneration of a CE tetrahydrofuran solution from ethanol followed by drying. The adsorption behavior of CE aerogels for pyridine and chlorobenzene in simulated organic wastewater was investigated through a batch static adsorption process. The effects of the contact time, initial concentration and degree of substitution (DS) on adsorption were studied in detail. The results demonstrated that the adsorption capacity of CE aerogels was highly correlated to the DS, and the maximum equilibrium adsorption capacity was determined to be 9.63 mmol/g for pyridine and 18.38 mmol/g for chlorobenzene. Due to the porous network structure of CE aerogels, the adsorption capacity for chlorobenzene of the CE aerogel was twice that of CE. Furthermore, the adsorption rate was fast, with more than 90% of the maximum equilibrium adsorption capacity achieved in 30 min. The isothermal adsorption of chlorobenzene by CE aerogels was compiled using the Langmuir isotherm model, and the kinetic adsorption was in good agreement with the Lagergren pseudo-second-order adsorption kinetics equation, which implied that cellulose laurate aerogels are promising adsorbents for the removal of pyridine and chlorobenzene from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al-Asheh S, Banat F, Al-Omari R, Duvnjak Z (2000) Predictions of binary sorption isotherms for the sorption of heavy metals by pine bark using single isotherm data. Chemosphere 41:659–665. doi:10.1016/S0045-6535(99)00497-X

    Article  CAS  Google Scholar 

  • Edgar KJ, Buchanan CM, Debenham JS, Rundquist PA, Seiler BD, Shelton MC, Tindall D (2001) Advances in cellulose ester performance and application. Prog Polym Sci 26:1605–1688. doi:10.1016/S0079-6700(01)00027-2

    Article  CAS  Google Scholar 

  • Gandini A (2008) Polymers from renewable resources: a challenge for the future of macromolecular materials. Macromolecules 41:9491–9504. doi:10.1021/ma801735u

    Article  CAS  Google Scholar 

  • Guo Z, Liu X, Huang H (2015) Kinetics and thermodynamics of reserpine adsorption onto strong acidic cationic exchange fiber. PLoS ONE 10:e0138619. doi:10.1371/journal.pone.0138619

    Article  Google Scholar 

  • Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465. doi:10.1016/S0032-9592(98)00112-5

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink H, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393. doi:10.1002/anie.200460587

    Article  CAS  Google Scholar 

  • Kumar PS, Ramalingam S, Kirupha SD, Murugesan A, Vidhyadevi T, Sivanesan S (2011) Adsorption behavior of nickel (II) onto cashew nut shell: Equilibrium, thermodynamics, kinetics, mechanism and process design. Chem Eng J 167:122–131. doi:10.1016/j.cej.2010.12.010

    Article  CAS  Google Scholar 

  • Lorenc-Grabowska E, Gryglewicz G (2007) Adsorption characteristics of Congo Red on coal-based mesoporous activated carbon. Dyes Pigments 74:34–40. doi:10.1016/j.dyepig.2006.01.027

    Article  CAS  Google Scholar 

  • Malmström E, Carlmark A (2012) Controlled grafting of cellulose fibres–an outlook beyond paper and cardboard. Polym Chem 3:1702–1713. doi:10.1039/C1PY00445J

    Article  Google Scholar 

  • Mathers RT (2012) How well can renewable resources mimic commodity monomers and polymers? J Polym Sci, Part A: Polym Chem 50:1–15. doi:10.1002/pola.24939

    Article  CAS  Google Scholar 

  • Miller SA (2013) Sustainable polymers: opportunities for the next decade. ACS Macro Lett 2:550–554

    Article  CAS  Google Scholar 

  • Mohan D, Pittman CU, Steele PH (2006) Single, binary and multi-component adsorption of copper and cadmium from aqueous solutions on Kraft lignin—a biosorbent. J Colloid Interface Sci 297:489–504. doi:10.1016/j.jcis.2005.11.023

    Article  CAS  Google Scholar 

  • Nageeb M (2013) Adsorption technique for the removal of organic pollutants from water and wastewater. INTECH Open Access Publisher, Rijeka

    Book  Google Scholar 

  • Niegelhell K, Süßenbacher M, Jammernegg K (2016) Enzymes as biodevelopers for nano-and micropatterned bicomponent biopolymer thin films. Biomacromol 17:3743–3749

    Article  CAS  Google Scholar 

  • Pehlivan E, Altun T (2006) The study of various parameters affecting the ion exchange of Cu 2+, Zn 2+, Ni 2+, Cd 2+, and Pb 2+ from aqueous solution on Dowex 50W synthetic resin. J Hazard Mater 134:149–156

    Article  CAS  Google Scholar 

  • Periasamy K, Namasivayam C (1995) Removal of nickel (II) from aqueous solution and nickel plating industry wastewater using an agricultural waste: peanut hulls. Waste Manag 15:63–68. doi:10.1016/0956-053X(94)00071-S

    Article  CAS  Google Scholar 

  • Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38:2046–2064

    Article  CAS  Google Scholar 

  • Song Q, Yang Y (2011) Preparation of cellulose laurate and characterization of its structure and performance. J Nanjing For Univ 35:91–95

    CAS  Google Scholar 

  • Strasser S, Niegelhell K, Kaschowitz M (2016) Exploring nonspecific protein adsorption on lignocellulosic amphiphilic bicomponent films[J]. Biomacromol 17(3):1083–1092

    Article  CAS  Google Scholar 

  • Sugimura K, Teramoto Y, Nishio Y (2013) Blend miscibility of cellulose propionate with poly(N-vinyl pyrrolidone-co-methyl methacrylate). Carbohydr Polym 98:532–541. doi:10.1016/j.carbpol.2013.06.045

    Article  CAS  Google Scholar 

  • Swain S, Mishra S, Sharma P, Patnaik T, Singh V, Jha U, Patel R, Dey R (2010) Development of a new inorganic−organic hybrid ion-exchanger of zirconium (IV)-propanolamine for efficient removal of fluoride from drinking water. Ind Eng Chem Res 49:9846–9856. doi:10.1021/ie1012536

    Article  CAS  Google Scholar 

  • Tang C (2013) Next-generation renewable polymers. Green Mater 1:62–63

    Article  Google Scholar 

  • Tizzotti M, Charlot A, Fleury E, Stenzel M, Bernard J (2010) Modification of polysaccharides through controlled/living radical polymerization grafting—towards the generation of high performance hybrids. Macromol Rapid Commun 31:1751–1772. doi:10.1002/marc.201000072

    Article  CAS  Google Scholar 

  • Vasiliu S, Bunia I, Racovita S, Neagu V (2011) Adsorption of cefotaxime sodium salt on polymer coated ion exchange resin microparticles: kinetics, equilibrium and thermodynamic studies. Carbohydr Polym 85:376–387. doi:10.1016/j.carbpol.2011.02.039

    Article  CAS  Google Scholar 

  • Wang L, Wu XL, Xu WH, Huang XJ, Liu JH, Xu AW (2012a) Stable organic–inorganic hybrid of polyaniline/α-zirconium phosphate for efficient removal of organic pollutants in water environment. ACS Appl Mater Interface 4:2686–2692. doi:10.1021/am300335e

    Article  CAS  Google Scholar 

  • Wang Z, Liu S, Matsumoto Y, Kuga S (2012b) Cellulose gel and aerogel from LiCl/DMSO solution. Cellulose 19:393–399. doi:10.1007/s10570-012-9651-2

    Article  CAS  Google Scholar 

  • Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div 89:31–60

    Google Scholar 

  • Wen X, Wang H, Wei Y (2017) Preparation and characterization of cellulose laurate ester by catalyzed transesterification. Carbohydr Polym 168:247–254. doi:10.1016/j.carbpol.2017.03.074

    Article  CAS  Google Scholar 

  • Wilbon PA, Chu F, Tang C (2013) Progress in renewable polymers from natural terpenes, terpenoids, and rosin. Macromol Rapid Commun 34:8–37. doi:10.1002/marc.201200513

    Article  CAS  Google Scholar 

  • Yao K, Tang C (2013) Controlled polymerization of next-generation renewable monomers and beyond. Macromolecules 46:1689–1712. doi:10.1021/ma3019574

    Article  CAS  Google Scholar 

  • Zhou Y, Min D, Wang Z, Yang Y, Kuga S (2014) Cellulose esterification with octanoyl chloride and its application to films and aerogels. BioResources 9:3901–3908. doi:10.15376/biores.9.3.3901-3908

    Google Scholar 

Download references

Acknowledgments

We are grateful for financial support from The Jiangsu Provincial Natural Science Foundation of China (BK20170924), the National Natural Science Foundation of China (No. 31200444) and project funding from the China Postdoctoral Science Foundation (164845).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiqin Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Yu, J., Zhang, L. et al. Cellulose laurate ester aerogel as a novel absorbing material for removing pollutants from organic wastewater. Cellulose 24, 5069–5078 (2017). https://doi.org/10.1007/s10570-017-1489-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1489-1

Keywords

Navigation