Skip to main content
Log in

Preparation and characterization of zinc oxide/TEMPO-oxidized cellulose nanofibril composite films

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

ZnO particle/water and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibril (TOCN)/water dispersions were mixed at various ratios under stirring. The aqueous ZnO/TOCN mixtures were sonicated, cast, and dried to prepare ZnO/TOCN composite films with various ZnO/TOCN weight ratios. The ZnO contents of the films were controlled to 0–50% (w/w). When the ZnO content was increased to 5–50%, the porosity of the composite films increased to 14–23%. This is probably because the positively charged ZnO particles and negatively charged TOCN elements formed aggregates in both aqueous mixtures and dried films. The ZnO/TOCN composite film of thickness 10 µm containing 10% ZnO had more than 80% light transmittance at 600 nm, and high UV-screening properties. The composite films containing 25 and 50% ZnO had almost perfect UV-screening properties, but their light transmittances at 600 nm were only 60–80%. All the composite films had low coefficients of thermal expansion (<10 ppm/K). Because the composite films consisted of stiff TOCNs and ZnO, but had porous structures, the tensile strength and strain-to-failure decreased slightly with increasing ZnO content from 0 to 10%. The composite film containing 50% ZnO had explicitly ductile properties because of its high porosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bagheri M, Rabieh S (2013) Preparation and characterization of cellulose-ZnO nanocomposite based on ionic liquid ([C4mim]Cl). Cellulose 20:699–705. doi:10.1007/s10570-012-9857-3

    Article  CAS  Google Scholar 

  • Cassie BD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551. doi:10.1039/tf9444000546

    Article  CAS  Google Scholar 

  • Chen D, Wang Z, Ren T, Ding H, Yao W, Zong R, Zhu Y (2014) Influence of defects on the photocatalytic activity of ZnO. J Phys Chem C 118:15300. doi:10.1021/jp5033349

    Article  CAS  Google Scholar 

  • El-Feky OM, Hassan EA, Fadel SM, Lassan ML (2014) Use of ZnO nanoparticles for protecting oil paintings on paper support against dirt, fungal attack, and UV aging. J Cult Herit 15:165–172. doi:10.1016/j.culher.2013.01.012

    Article  Google Scholar 

  • El-Hady MMA, Farouk A, Sharaf S (2013) Flame retardancy and UV protection of cotton based fabrics using nano ZnO and polycarboxylic acids. Carbohydr Polym 92:400–406. doi:10.1016/j.carbpol.2012.08.085

    Article  Google Scholar 

  • Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromol 10:162165. doi:10.1021/bm801065u

    Article  Google Scholar 

  • Gilman JW (1999) Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Appl Clay Sci 15:31–49. doi:10.1016/S0169-1317(99)00019-8

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chemi Rev 110(6):3479–3500

    Article  CAS  Google Scholar 

  • Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromol 9:1579–1585. doi:10.1021/bm800038n

    Article  CAS  Google Scholar 

  • Hosono E, Fujihara S, Honma I, Zhou H (2005) Superhydrophobic perpendicular nanopin film by the bottom-up process. J Am Chem Soc 127:13458–13459. doi:10.1021/ja053745j

    Article  CAS  Google Scholar 

  • Isogai A (2013) Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials. J Wood Sci 59:449–459

    Article  CAS  Google Scholar 

  • Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85. doi:10.1039/c0nr00583e

    Article  CAS  Google Scholar 

  • John A, Ko HU, Kim DG (2011) Preparation of cellulose-ZnO hybrid films by a wet chemical method and their characterization. Cellulose 18:675–680. doi:10.1007/s10570-011-9523-1

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466

    Article  CAS  Google Scholar 

  • Li YQ, Fu SY, Mai YW (2006) Preparation and characterization of transparent ZnO/epoxy nanocomposites with high-UV shielding efficiency. Polym (Guildf) 47:2127–2132. doi:10.1016/j.polymer.2006.01.071

    Article  CAS  Google Scholar 

  • Lizundia E, Urruchi A, Vilas JL, León LM (2016) Increased functional properties and thermal stability of flexible cellulose nanocrystal/ZnO films. Carbohydr Polym 136:250–258. doi:10.1016/j.carbpol.2015.09.041

    Article  CAS  Google Scholar 

  • Ma X, Chang PR, Yang J, Yu J (2009) Preparation and properties of glycerol plasticized-pea starch/zinc oxide-starch bionanocomposites. Carbohydr Polym 75:472–478. doi:10.1016/j.carbpol.2008.08.007

    Article  CAS  Google Scholar 

  • Martins NCT, Freire CSR, Neto CP, Silvestre AJD, Causio J, Baldi G, Sadocco P, Trindade T (2013) Antibacterial paper based on composite coatings of nanofibrillated cellulose and ZnO. Coll Surf A Physicochem Eng Asp 417:111–119. doi:10.1016/j.colsurfa.2012.10.042

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J,  Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  Google Scholar 

  • Norton DP, Heo YW, Ivill MP, Ip K, Pearton SJ, Chisholm MF, Steiner T (2004) ZnO: growth, doping & processing. Mater Today 7:34–40. doi:10.1016/S1369-7021(04)00287-1

    Article  CAS  Google Scholar 

  • Okita Y, Saito T, Isogai A (2010) Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules 11:1696–1700

    Article  CAS  Google Scholar 

  • Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromol 7:1687–1691. doi:10.1021/bm060154s

    Article  CAS  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol 8:2485–2491. doi:10.1021/bm0703970

    Article  CAS  Google Scholar 

  • Saito T, Uematsu T, Kimura S, Enomae T, Isogai A (2011) Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter 7:8804–8809. doi:10.1039/c1sm06050c

    Article  CAS  Google Scholar 

  • Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57:651–660. doi:10.1002/pol.1962.1205716551

    Article  CAS  Google Scholar 

  • Shankar S, Reddy JP, Rhim JW, Kim HY (2015) Preparation, characterization, and antimicrobial activity of chitin nanofibrils reinforced carrageenan nanocomposite films. Carbohydr Polym 117:468–475. doi:10.1016/j.carbpol.2014.10.010

    Article  CAS  Google Scholar 

  • Shinoda R, Saito T, Okita Y, Isogai A (2012) Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules 13:842–849

    Article  CAS  Google Scholar 

  • Sim LC, Ramanan SR, Ismail H, Seetharamu KN, Goh TJ (2005) Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes. Thermochim Acta 430:155–165. doi:10.1016/j.tca.2004.12.024

    Article  CAS  Google Scholar 

  • Singh M, Singh M (2013) Thermal expansion in zinc oxide nanomaterials. Nanosci Nanotechnol Res 1:27–29. doi:10.12691/nnr-1-2-4

    Google Scholar 

  • Sinha R, Häder D (2002) UV-induced DNA damage and repair: a review. Photochem Photobiol Sci 1:225–236. doi:10.1039/B201230H

    Article  CAS  Google Scholar 

  • Takaichi S, Saito T, Tanaka R, Isogai A (2014) Improvement of nanodispersibility of oven-dried TEMPO-oxidized celluloses in water. Cellul 21:4093–4103

    Article  CAS  Google Scholar 

  • Tang W, Santare MH, Advani SG (2003) Melt processing and mechanical property characterization of multi-walled carbon nanotube/high density polyethylene (MWNT/HDPE) composite films. Carbon 41:2779–2785. doi:10.1016/S0008-6223(03)00387-7

    Article  CAS  Google Scholar 

  • Wu CN, Saito T, Fujisawa S, Fukuzumi H, Isogai A (2012) Ultrastong and high gas-barrrier nanocellulose/clay layered composites. Biomacromol 13:1927–1932. doi:10.1021/bm300465d

    Article  CAS  Google Scholar 

  • Wu CN, Yang Q, Takeuchi M, Saito T, Isogai A (2014a) Highly tough and transparent layered composites of nanocellulose and synthetic silicate. Nanoscale 6:392–399. doi:10.1039/c3nr04102f

    Article  CAS  Google Scholar 

  • Wu CN, Saito T, Yang Q, Fukuzumi H, Isogai A (2014b) Increase in the water contact angle of composite film surfaces caused by the assembly of hydrophilic nanocellulose fibrils and nanoclay platelets. ACS Appl Mater Interfaces 6:12707–12712. doi:10.1021/am502701e

    Article  CAS  Google Scholar 

  • Xiong H, Xu Y, Ren QG, Xia YY (2008) Stable aqueous ZnO polymer core-shell nanoparticles with tunable photoluminescence and their application in cell imaging. J Am Chem Soc 130:7522–7523. doi:10.1021/ja800999u

    Article  CAS  Google Scholar 

  • Yadollahi M, Gholamali I, Namazi H, Aghazadeh M (2015) Synthesis and characterization of antibacterial carboxymethyl cellulose/ZnO nanocomposite hydrogels. Int J Biol Macromol 74:136–141. doi:10.1016/j.ijbiomac.2014.11.032

    Article  CAS  Google Scholar 

  • Yang Q, Liu Y, Pan C, Chen J, Wen X, Wang ZL (2013) Largely enhanced efficiency in ZnO nanowire/p-polymer hybridized inorganic/organic ultraviolet light-emitting diode by piezo-phototronic effect. Nano Lett 13:607–613. doi:10.1021/nl304163n

    Article  CAS  Google Scholar 

  • Yates B, Cooper RF, Kreitman MM (1971) Low-temperature thermal expansion of zinc oxide. Vibrations in zinc oxide and sphalerite zinc sulfide. Phys Rev B 4:1314–1323. doi:10.1103/PhysRevB.4.1314

    Article  Google Scholar 

  • Yu HY, Chen GY, Wang YB, Yao JM (2015) A facile one-pot route for preparing cellulose nanocrystal/zinc oxide nanohybrids with high antibacterial and photocatalytic activity. Cellulose 22:261–273. doi:10.1007/s10570-014-0491-0

    Article  CAS  Google Scholar 

  • Zuiderduin WCJ, Westzaan C, Huétink J, Gaymans RJ (2003) Toughening of polypropylene with calcium carbonate particles. Polymer 47:2127–2132. doi:10.1016/j.polymer.2006.01.071

    Google Scholar 

Download references

Acknowledgments

This research was supported by Core Research for Evolutional Science and Technology (CREST, Grant Number JPMJCR13B2) of the Japan Science and Technology Agency (JST). RN is a recipient of a Japan Monbukagakusho Fellowship for Foreign Ph.D. Students.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Isogai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1443 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, R., Wu, CN., Takeuchi, M. et al. Preparation and characterization of zinc oxide/TEMPO-oxidized cellulose nanofibril composite films. Cellulose 24, 4861–4870 (2017). https://doi.org/10.1007/s10570-017-1480-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1480-x

Keywords

Navigation