Advertisement

Cellulose

, Volume 24, Issue 10, pp 4313–4323 | Cite as

The influence of nanocellulosic fiber, extracted from Helicteres isora, on thermal, wetting and viscoelastic properties of poly(butylene succinate) composites

  • Jithin Joy
  • Cintil Jose
  • Xiaoyan Yu
  • Lovely Mathew
  • Sabu Thomas
  • Srikanth PillaEmail author
Original Paper

Abstract

In this study, the thermal, wetting and viscoelastic properties of biodegradable poly(butylene succinate)–isora nanofibril (PBS–INF) composites were investigated. Optical polarizing microscopy showed that incorporating INF in PBS enhanced the number of nucleation sites while also reducing its spherulitic size. Wide-angle X-ray diffraction results showed the influence of INF on the crystal structure of PBS. Dynamic mechanical analysis results revealed increases in storage and loss moduli with increasing INF content. Differential scanning calorimetry analysis showed that incorporating INF facilitated crystallization at higher temperatures. INF slightly enhanced the melting behavior of PBS matrix. Thermogravimetric analysis results demonstrated no definitive change in the thermal stability of PBS upon inclusion of INF. Contact angle studies showed enhancement in the hydrophilic nature of PBS–INF composites. Overall, INF had a positive influence on the thermophysical properties of PBS providing a feasibility for using PBS–INF composites in automotive interiors, food packaging and related applications.

Keywords

Poly(butylene succinate) Cellulose nanofiber Nanocomposite Helicteres isora 

Notes

Acknowledgments

This work was partially supported by the USDA National Institute of Food and Agriculture, AFRI project [2016-67021-25016]. The first author would like to acknowledge the fellowship support of the University Grants Commission, India. Finally, the authors are thankful to Dr. Craig Clemons of Forest Products Laboratory for his perspective thoughts and suggestions.

References

  1. Albertsson AC, Karlsson S (1995) Degradable polymers for the future. Acta Polym 46:114–123. doi: 10.1002/actp.1995.010460203 CrossRefGoogle Scholar
  2. Alves da Silva ML, Crawford A, Mundy JM et al (2010) Chitosan/polyester-based scaffolds for cartilage tissue engineering: assessment of extracellular matrix formation. Acta Biomater 6:1149–1157. doi: 10.1016/j.actbio.2009.09.006 CrossRefGoogle Scholar
  3. Ardanuy M, Claramunt J, García-Hortal JA, Barra M (2011) Fiber-matrix interactions in cement mortar composites reinforced with cellulosic fibers. Cellulose 18:281–289. doi: 10.1007/s10570-011-9493-3 CrossRefGoogle Scholar
  4. Bai W, Holbery ÆJ, Li ÆK (2009) A technique for production of nanocrystalline cellulose with a narrow size distribution. Cellulose. doi: 10.1007/s10570-009-9277-1 Google Scholar
  5. Bao L, Chen Y, Zhou W et al (2011) Bamboo fibers@ poly (ethylene glycol)-reinforced poly (butylene succinate) biocomposites. J Appl Polym Sci 122:2456–2466. doi: 10.1002/app.34365 CrossRefGoogle Scholar
  6. Bin T, Qu J, Liu L et al (2011) Non-isothermal crystallization kinetics and dynamic mechanical thermal properties of poly(butylene succinate) composites reinforced with cotton stalk bast fibers. Thermochim Acta 525:141–149. doi: 10.1016/j.tca.2011.08.003 CrossRefGoogle Scholar
  7. Brígida AIS, Calado VMA, Gonçalves LRB, Coelho MAZ (2010) Effect of chemical treatments on properties of green coconut fiber. Carbohydr Polym 79:832–838. doi: 10.1016/j.carbpol.2009.10.005 CrossRefGoogle Scholar
  8. Cerqueira EF, Baptista CARP, Mulinari DR (2011) Mechanical behaviour of polypropylene reinforced sugarcane bagasse fibers composites. Procedia Eng 10:2046–2051. doi: 10.1016/j.proeng.2011.04.339 CrossRefGoogle Scholar
  9. Chen G-X, Yoon J-S (2005) Thermal stability of poly(l-lactide)/poly(butylene succinate)/clay nanocomposites. Polym Degrad Stab 88:206–212. doi: 10.1016/j.polymdegradstab.2004.06.005 CrossRefGoogle Scholar
  10. Chen W, Yu H, Liu Y (2011) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose. doi: 10.1007/s10570-011-9497-z Google Scholar
  11. Chirayil CJ, Joy J, Mathew L et al (2014a) Nanofibril reinforced unsaturated polyester nanocomposites: morphology, mechanical and barrier properties, viscoelastic behavior and polymer chain confinement. Ind Crops Prod 56:246–254. doi: 10.1016/j.indcrop.2014.03.005 CrossRefGoogle Scholar
  12. Chirayil CJ, Joy J, Mathew L et al (2014b) Isolation and characterization of cellulose nanofibrils from Helicteres isora plant. Ind Crops Prod 59:27–34. doi: 10.1016/j.indcrop.2014.04.020 CrossRefGoogle Scholar
  13. Corrêa AC, Morais Teixeira E, Pessan LA et al (2010) Cellulose nanofibers from curaua fibers. Cellulose 17:1183–1192. doi: 10.1007/s10570-010-9453-3 CrossRefGoogle Scholar
  14. Correlo VM, Boesel LF, Bhattacharya M et al (2005) Hydroxyapatite reinforced chitosan and polyester blends for biomedical applications. Macromol Mater Eng 290:1157–1165. doi: 10.1002/mame.200500163 CrossRefGoogle Scholar
  15. Costa-Pinto AR, Correlo VM, Sol PC et al (2009) Osteogenic differentiation of human bone marrow mesenchymal stem cells seeded on melt based chitosan scaffolds for bone tissue engineering applications. Biomacromol 10:2067–2073. doi: 10.1021/bm9000102 CrossRefGoogle Scholar
  16. Deepa B, Abraham E, Cherian BM et al (2011) Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresour Technol 102:1988–1997. doi: 10.1016/j.biortech.2010.09.030 CrossRefGoogle Scholar
  17. Fahma F, Iwamoto S, Hori N et al (2010a) Effect of pre-acid-hydrolysis treatment on morphology and properties of cellulose nanowhiskers from coconut husk. Cellulose 18:443–450. doi: 10.1007/s10570-010-9480-0 CrossRefGoogle Scholar
  18. Fahma F, Iwamoto S, Hori N et al (2010b) Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB). Cellulose 17:977–985. doi: 10.1007/s10570-010-9436-4 CrossRefGoogle Scholar
  19. Feng Y-H, Zhang D-W, Qu J-P et al (2011) Rheological properties of sisal fiber/poly(butylene succinate) composites. Polym Test 30:124–130. doi: 10.1016/j.polymertesting.2010.11.004 CrossRefGoogle Scholar
  20. Habibi Y, Chanzy H, Vignon MR (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose. doi: 10.1007/s10570-006-9075-y Google Scholar
  21. Han SO, Lee SM, Park WH, Cho D (2005) Mechanical and thermal properties of waste silk fiber-reinforced poly (butylene succinate) biocomposites. J Appl Polym Sci. doi: 10.1002/app.23300 Google Scholar
  22. Ichikawa Y, Kondo H, Igarashi Y et al (2000) Crystal structures of α and β forms of poly(tetramethylene succinate). Polymer 41:4719–4727. doi: 10.1016/S0032-3861(99)00659-X CrossRefGoogle Scholar
  23. Ishiaku US, Khondker OA, Baba S et al (2005) Processing and characterization of short-fiber reinforced jute/poly butylene succinate biodegradable composites: the effect of weld-line. J Polym Environ 13:151–157. doi: 10.1007/s10924-005-2946-8 CrossRefGoogle Scholar
  24. Joy J, Jose C, Varanasi SB et al (2016) Preparation and characterization of poly(butylene succinate) bionanocomposites reinforced with cellulose nanofiber extracted from Helicteres isora plant. J Renew Mater 4:351–364. doi: 10.7569/JRM.2016.634128 CrossRefGoogle Scholar
  25. Kramárová Z, Alexy P, Chodák I et al (2007) Biopolymers as fillers for rubber blends. Polym Adv Technol 18:135–140. doi: 10.1002/pat.803 CrossRefGoogle Scholar
  26. Kuan C-F, Ma C-CM, Kuan H-C et al (2006) Preparation and characterization of the novel water-crosslinked cellulose reinforced poly(butylene succinate) composites. Compos Sci Technol 66:2231–2241. doi: 10.1016/j.compscitech.2005.12.011 CrossRefGoogle Scholar
  27. Lai S-M, Huang C-K, Shen H-F (2005) Preparation and properties of biodegradable poly(butylene succinate)/starch blends. J Appl Polym Sci 97:257–264. doi: 10.1002/app.21679 CrossRefGoogle Scholar
  28. Lee S-H, Wang S (2006) Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Compos A Appl Sci Manuf 37:80–91. doi: 10.1016/j.compositesa.2005.04.015 CrossRefGoogle Scholar
  29. Lee MW, Han SO, Seo YB (2008) Red algae fibre/poly(butylene succinate) biocomposites: the effect of fibre content on their mechanical and thermal properties. Compos Sci Technol 68:1266–1272. doi: 10.1016/j.compscitech.2007.12.016 CrossRefGoogle Scholar
  30. Li Y-D, Zeng J-B, Wang X-L et al (2008) Structure and properties of soy protein/poly(butylene succinate) blends with improved compatibility. Biomacromolecules 9:3157–3164. doi: 10.1021/bm800745p CrossRefGoogle Scholar
  31. Lin N, Yu J, Chang PR et al (2011) Poly(butylene succinate)-based biocomposites filled with polysaccharide nanocrystals: structure and properties. Polym Compos 32:472–482. doi: 10.1002/pc.21066 CrossRefGoogle Scholar
  32. Liu L, Yu J, Cheng L, Yang X (2009) Biodegradability of poly(butylene succinate) (PBS) composite reinforced with jute fibre. Polym Degrad Stab 94:90–94. doi: 10.1016/j.polymdegradstab.2008.10.013 CrossRefGoogle Scholar
  33. Mora JI, Va A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose. doi: 10.1007/s10570-007-9145-9 Google Scholar
  34. Morais Teixeira E, Corrêa AC, Manzoli A et al (2010) Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose 17:595–606. doi: 10.1007/s10570-010-9403-0 CrossRefGoogle Scholar
  35. Nam TH, Ogihara S, Tung NH, Kobayashi S (2011) Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly(butylene succinate) biodegradable composites. Compos B Eng 42:1648–1656. doi: 10.1016/j.compositesb.2011.04.001 CrossRefGoogle Scholar
  36. Ohkita T, Lee S-H (2005) Crystallization behavior of poly(butylene succinate)/corn starch biodegradable composite. J Appl Polym Sci 97:1107–1114. doi: 10.1002/app.21741 CrossRefGoogle Scholar
  37. Oksman K, Mathew AP, Långström R et al (2009) The influence of fibre microstructure on fibre breakage and mechanical properties of natural fibre reinforced polypropylene. Compos Sci Technol 69:1847–1853. doi: 10.1016/j.compscitech.2009.03.020 CrossRefGoogle Scholar
  38. Pahimanolis N, Hippi U, Johansson L-S et al (2011) Surface functionalization of nanofibrillated cellulose using click-chemistry approach in aqueous media. Cellulose 18:1201–1212. doi: 10.1007/s10570-011-9573-4 CrossRefGoogle Scholar
  39. Palakattukunnel ST, Thomas S, Sreekumar PA, Bandyopadhyay S (2011) Poly(ethylene-co-vinyl acetate)/calcium phosphate nanocomposites: contact angle, diffusion and gas permeability studies. J Polym Res 18:1277–1285. doi: 10.1007/s10965-010-9530-1 CrossRefGoogle Scholar
  40. Phua YJ, Lau NS, Sudesh K et al (2012) Biodegradability studies of poly(butylene succinate)/organo-montmorillonite nanocomposites under controlled compost soil conditions: effects of clay loading and compatibiliser. Polym Degrad Stab 97:1345–1354. doi: 10.1016/j.polymdegradstab.2012.05.024 CrossRefGoogle Scholar
  41. Phua YJ, Chow WS, Mohd Ishak ZA (2013) Organomodification of montmorillonite and its effects on the properties of poly(butylene succinate) nanocomposites. Polym Eng Sci 53:1947–1957. doi: 10.1002/pen.23460 CrossRefGoogle Scholar
  42. Pramoda KP, Linh NTT, Zhang C, Liu T (2008) Multiwalled carbon nanotube nucleated crystallization behavior of biodegradable poly (butylene succinate) nanocomposites. J Appl Polym Sci 111:2938–2945. doi: 10.1002/app.29349 CrossRefGoogle Scholar
  43. Qiu Z, Komura M, Ikehara T, Nishi T (2003) Poly(butylene succinate)/poly(vinyl phenol) blends. Part 1. Miscibility and crystallization. Polymer 44:8111–8117. doi: 10.1016/j.polymer.2003.10.030 CrossRefGoogle Scholar
  44. Ratto JA, Stenhouse PJ, Auerbach M et al (1999) Processing, performance and biodegradability of a thermoplastic aliphatic polyester/starch system. Polymer 40:6777–6788. doi: 10.1016/S0032-3861(99)00014-2 CrossRefGoogle Scholar
  45. Sahoo S, Misra M, Mohanty AK (2011) Enhanced properties of lignin-based biodegradable polymer composites using injection moulding process. Compos A Appl Sci Manuf 42:1710–1718. doi: 10.1016/j.compositesa.2011.07.025 CrossRefGoogle Scholar
  46. Satheesh Kumar MN, Mohanty AK, Erickson L, Misra M (2009) Lignin and its applications with polymers. J Biobased Mater Bioenergy 3:1–24. doi: 10.1166/jbmb.2009.1001 CrossRefGoogle Scholar
  47. Shanmugam D, Thiruchitrambalam M (2013) Static and dynamic mechanical properties of alkali treated unidirectional continuous palmyra palm leaf stalk fiber/jute fiber reinforced hybrid polyester composites. Mater Des 50:533–542. doi: 10.1016/j.matdes.2013.03.048 CrossRefGoogle Scholar
  48. Shih YF, Wang TY, Jeng RJ et al (2007) Biodegradable nanocomposites based on poly(butylene succinate)/organoclay. J Polym Environ 15:151–158. doi: 10.1007/s10924-007-0055-6 CrossRefGoogle Scholar
  49. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494. doi: 10.1007/s10570-010-9405-y CrossRefGoogle Scholar
  50. Song L, Qiu Z (2009) Crystallization behavior and thermal property of biodegradable poly(butylene succinate)/functional multi-walled carbon nanotubes nanocomposite. Polym Degrad Stab 94:632–637. doi: 10.1016/j.polymdegradstab.2009.01.009 CrossRefGoogle Scholar
  51. Tan L, Chen Y, Zhou W et al (2011) Novel approach toward poly(butylene succinate)/single-walled carbon nanotubes nanocomposites with interfacial-induced crystallization behaviors and mechanical strength. Polymer 52:3587–3596. doi: 10.1016/j.polymer.2011.06.006 CrossRefGoogle Scholar
  52. Thirmizir MZA, Ishak ZAM, Taib RM et al (2011) Kenaf-bast-fiber-filled biodegradable poly(butylene succinate) composites: Effects of fiber loading, fiber length, and maleated poly(butylene succinate) on the flexural and impact properties. J Appl Polym Sci 122:3055–3063. doi: 10.1002/app.34046 CrossRefGoogle Scholar
  53. Wang G, Guo B, Xu J et al (2011a) Rheology, crystallization behaviors, and thermal stabilities of poly(butylene succinate)/pristine multiwalled carbon nanotube composites obtained by melt compounding. J Appl Polym Sci 121:59–67. doi: 10.1002/app.33222 CrossRefGoogle Scholar
  54. Wang X, Yang H, Song L et al (2011b) Morphology, mechanical and thermal properties of graphene-reinforced poly(butylene succinate) nanocomposites. Compos Sci Technol 72:1–6. doi: 10.1016/j.compscitech.2011.05.007 CrossRefGoogle Scholar
  55. Wang QQ, Zhu JY, Gleisner R et al (2012a) Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation. Cellulose 19:1631–1643. doi: 10.1007/s10570-012-9745-x CrossRefGoogle Scholar
  56. Wang XW, Zhang C, Wang PL et al (2012b) Enhanced performance of biodegradable poly(butylene succinate)/graphene oxide nanocomposites via in situ polymerization. Langmuir 28:7091–7095. doi: 10.1021/la204894h CrossRefGoogle Scholar
  57. Yuan L, Wu D, Zhang M et al (2011) Rheological percolation behavior and isothermal crystallization of poly(butyene succinte)/carbon nanotube composites. Ind Eng Chem Res 50:14186–14192. doi: 10.1021/ie202039v CrossRefGoogle Scholar
  58. Zeng J-B, Jiao L, Li Y-D et al (2011) Bio-based blends of starch and poly(butylene succinate) with improved miscibility, mechanical properties, and reduced water absorption. Carbohydr Polym 83:762–768. doi: 10.1016/j.carbpol.2010.08.051 CrossRefGoogle Scholar
  59. Zhou W, Yuan S, Chen Y, Bao L (2011) Morphology and hydrogen-bond restricted crystallization of poly(butylene succinate)/cellulose diacetate blends. J Appl Polym Sci 124:3124–3131. doi: 10.1002/app.35351 CrossRefGoogle Scholar
  60. Zhou W, Xu T, Wang X et al (2013) In situ polymerized nanocomposites of poly (butylene succinate)/TiO2 nanofibers: molecular weight, morphology, and thermal properties. J Appl Polym Sci. doi: 10.1002/app.37724 Google Scholar
  61. Zhou M, Fan M, Zhao Y et al (2016) Effect of stretching on the mechanical properties in melt-spun poly(butylene succinate)/microfibrillated cellulose (MFC) nanocomposites. Carbohydr Polym 140:383–392. doi: 10.1016/j.carbpol.2015.12.040 CrossRefGoogle Scholar
  62. Zuluaga R, Putaux J-L, Restrepo A et al (2007) Cellulose microfibrils from banana farming residues: isolation and characterization. Cellulose 14:585–592. doi: 10.1007/s10570-007-9118-z CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Automotive EngineeringClemson UniversityGreenvilleUSA
  2. 2.School of Chemical Sciences, International and Inter University Centre for Nanoscience and NanotechnologyMahatma Gandhi UniversityKottayamIndia
  3. 3.Department of ChemistryNewman CollegeThodupuzhaIndia
  4. 4.Viswajyothi College of Engineering and TechnologyVazhakulamIndia
  5. 5.Department of Materials Science and EngineeringClemson UniversityClemsonUSA

Personalised recommendations