Advertisement

Cellulose

, Volume 24, Issue 10, pp 4303–4312 | Cite as

Microfibrillated cellulose with sizing for reinforcing composites with LDPE

  • Amaury Lepetit
  • Richard Drolet
  • Balázs Tolnai
  • Daniel MontplaisirEmail author
  • Romain Lucas
  • Rachida ZerroukiEmail author
Original Paper

Abstract

Microfibrillated cellulose (MFC) fibers were acylated by the sizing agent, alkenyl succinic anhydride (ASA) reagent in an aqueous medium, by simple impregnation. The chemical modification was confirmed by Fourier transform infrared spectroscopy and solid-state 13C NMR. All the samples were combined with low-density polyethylene and the morphology, thermal properties, mechanical properties and water absorption behavior of the ensuing composites were investigated. The chemical modification of the MFC with ASA improved the interfacial adhesion with the matrix and hence the mechanical properties of the composites while decreasing their water uptake capacity. In addition, it was shown that the degree of substitution strongly influenced the performance of the composites.

Keywords

Microfibrillated cellulose Polymer-matrix composites Mechanical properties Surface treatments 

Notes

Acknowledgments

The authors are thankful to Kruger Biomaterial Inc. (Trois-Rivières, Canada) for supplying MFC fibers as a raw material.

References

  1. Darie RN, Vlad S, Anghel N, Doroftei F, Tamminen T, Spiridon L (2014) New PP/PLA/cellulose composites: effect of cellulose functionalization on accelerated weathering behavior. Polym Adv Technol 26:941–952CrossRefGoogle Scholar
  2. Ellis B (2000) Polymers: a property database. CRC Press, Boca RatonGoogle Scholar
  3. Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596CrossRefGoogle Scholar
  4. Gu R, Sain M, Kokta BV (2015) Evaluation of wood composite additives in the mechanical property changes of PE blends. Polym Compos 36:287–293CrossRefGoogle Scholar
  5. Hagiopol C, Johnston JW (2011) Chemistry of modern papermaking. CRC Press, Boca RatonGoogle Scholar
  6. Hubbe MA (2007) Paper’s resistance to wetting: a review of internal sizing chemicals and their effects. BioResources 2:106–145Google Scholar
  7. Iwamoto S, Yamamoto S, Lee S-H, Endo T (2014) Mechanical properties of polypropylene composites reinforced by surface-coated microfibrillated cellulose. Compos Part A Appl Sci Manuf 59:26–29CrossRefGoogle Scholar
  8. Kitano T, Kataoka T, Nagatsuka Y (1984) Shear flow rheological properties of vinylon- and glass-fiber reinforced polyethylene melts. Rheol Acta 23:20–30CrossRefGoogle Scholar
  9. Li J, Zhang LP, Peng F et al (2009) Microwave-assisted solvent-free acetylation of cellulose with acetic anhydride in the presence of iodine as a catalyst. Molecules 14:3551–3566CrossRefGoogle Scholar
  10. Lindfors J, Salmi J, Laine J, Stenius P (2007) AKD and ASA model surfaces: preparation and characterization. BioResources 2:652–670Google Scholar
  11. Lu J, Wang T, Drzal LT (2008) Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials. Compos Part A Appl Sci Manuf 39:738–746CrossRefGoogle Scholar
  12. Panaitescu DM, Donescu D, Bercu C et al (2007a) Polymer composites with cellulose microfibrils. Polym Eng Sci 47:1228–1234CrossRefGoogle Scholar
  13. Panaitescu DM, Notingher PV, Ghiurea M et al (2007b) Properties of composite materials from polyethylene and cellulose microfibrils. J Optoelectron Adv Mater 9:2526–2528Google Scholar
  14. Quillin DT, Caulfield DF, Koutsky JA (1992) Cellulose polypropylene composites: the use of AKD and ASA sizes as compatibilizers. Int J Polym Mater 17:215–227CrossRefGoogle Scholar
  15. Sato A, Kabusaki D, Okumura H et al (2016) Surface modification of cellulose nanofibers with alkenyl succinic anhydride for high-density polyethylene reinforcement. Compos Part A Appl Sci Manuf 83:72–79CrossRefGoogle Scholar
  16. Satyanarayana KG, Arizaga GGC, Wypych F (2009) Biodegradable composites based on lignocellulosic fibers: an overview. Prog Polym Sci 34:982–1021CrossRefGoogle Scholar
  17. Shalwan A, Yousif BF (2013) In state of art: mechanical and tribological behaviour of polymeric composites based on natural fibres. Mater Des 48:14–24CrossRefGoogle Scholar
  18. Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432CrossRefGoogle Scholar
  19. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRefGoogle Scholar
  20. Stamboulis A, Baillie CA, Garkhail SK et al (2000) Environmental durability of flax fibres and their composites based on polypropylene matrix. Appl Compos Mater 7:273–294CrossRefGoogle Scholar
  21. Wambua P, Ivens J, Verpoest I (2003) Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol 63:1259–1264CrossRefGoogle Scholar
  22. Wang WJ, Wang WW, Shao ZQ (2014) Surface modification of cellulose nanowhiskers for application in thermosetting epoxy polymers. Cellulose 21:2529–2538CrossRefGoogle Scholar
  23. Yan Y, Amer H, Rosenau T et al (2016) Dry, hydrophobic microfibrillated cellulose powder obtained in a simple procedure using alkyl ketene dimer. Cellulose 23:1189–1197CrossRefGoogle Scholar
  24. Zhang H, Kannangara D, Hilder M et al (2007) The role of vapour deposition in the hydrophobization treatment of cellulose fibres using alkyl ketene dimers and alkenyl succinic acid anhydrides. Colloids Surf A Physicochem Eng Asp 297:203–210CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Amaury Lepetit
    • 1
    • 2
  • Richard Drolet
    • 3
  • Balázs Tolnai
    • 3
  • Daniel Montplaisir
    • 2
    Email author
  • Romain Lucas
    • 4
  • Rachida Zerrouki
    • 1
    Email author
  1. 1.Laboratoire de chimie des substances naturellesUniversité de LimogesLimogesFrance
  2. 2.Centre de recherche sur les matériaux renouvelablesUniversité du Québec à Trois-RivièresTrois-RivièresCanada
  3. 3.Kruger Biomaterials IncMontréalCanada
  4. 4.SPCTS - UMR 7315Université de LimogesLimogesFrance

Personalised recommendations