Abstract
Microorganisms play an important role in the bioconversion of organic residues and have therefore become promising for obtaining value-added enzymes. In an attempt to take advantage of the by-products and residues of bioconversion, this work sought to use lignocellulosic fractions extracted from corncob as fermentation substrate for ligninase induction by Pleurotus sajor-caju. To obtain the corncob lignocellulosic fractions, biomass was submitted to treatment by alkaline extraction (NaOH 0.75 mol L−1, 55 °C for 2 h) and organosolv (40% ethanol/water, 185 °C for 20 min). The in natura biomass and lignocellulosic fractions were used as substrates in the subsequent fermentation processes: 2% in natura corncob; 2% cellulose–lignin complex fraction; 2% lignin-enriched fraction; 1% lignin-enriched fraction; and synthetic medium fungal (SMF) as standard. Chemical and physical–chemical analyses indicated the effectiveness of the lignocellulosic extraction process. According to the results, the developed system promoted the induction of ligninases by P. sajor-caju. The enzymatic analysis showed laccase production (768 U L−1) using the 1% lignin-enriched fraction as substrate. Manganese peroxidase production was 1050 U L−1 with the use of the 2% lignin-enriched fraction. The presence of lignocellulosic fractions extracted from corncob’s lignin-enriched fraction in the culture medium favored the induction of ligninases in comparison to the use of residue alone.
This is a preview of subscription content, access via your institution.







References
Bao W, Fukushima Y, Jensen KA (1994) Oxidative degradation of non phenolic lignin durin lipid peroxidation by fungal manganese peroxidase. FEBiS Lett 3:297–300
Barakat A, Chuetor S, Monlau F, Solhy A, Rouau X (2014) Eco-friendly dry chemo-mechanical pretreatments of lignocellulosic biomass: impact on energy and yield of the enzymatic hydrolysis. Appl Energy 113:97–105
Bensah EC, Mensah M (2013) Chemical pretreatment methods for the production of cellulosic ethanol: technologies and Innovations. Int J Chem Eng. doi:10.1155/2013/719607
Bernardi E, Donini LP, Minotto E, Nascimento JS (2007) Utilização de diferentes substratos para a produção de inoculo de Pleurotus ostreatoroseus. Revis Ciênc Agron 38:84–89
Buzała KP, Przybysz P, Kalinowska H, Przybysz K, Kucner M, Dubowik M (2016) Evaluation of pine kraft cellulosic pulps and fines from papermaking as potential feedstocks for biofuel production. Cellulose 23:649–659
Cao S, Aita GM (2013) Enzymatic hydrolysis and ethanol yields of combined surfactant and dilute ammonia treated sugarcane bagasse. Biores Technol 131:357–364
Chen X, Gu Y, Zhou X, Zhang Y (2014) Asparagus stem as a new lignocellulosic biomass feedstock for anaerobic digestion: increasing hydrolysis rate, methane production and biodegradability by alkaline pretreatment. Biores Technol 164:78–85
Corrêa RCG, Silva BP, Castoldi R, Kato CG, Sá-Nakanishi AB, Peralta RA, Souza CGM, Bracht A, Peralta RM (2016) Spent mushroom substrate of Pleurotus pulmonarius: a source of easily hydrolyzable lignocellulose. Folia Microbiol 5:1–10
Dhouib A, Hamza M, Zouari H, Mechichi T, H’midi R, Labat M, Martínez MJ, Sayadi S (2005) Autochthonous fungal strains with high ligninolytic activities from Tunisian biotopes. Afr J Biotech 4:431–436
Evstigneev EI (2011) Factors affecting lignin solubility. Macromolecular chemistry and polymeric materials. Russian J Appl Chem 84:1040–1045
Hong E, Kim D, Kim J, Kim J, Yoon S, Rhie S, Ha S, Ryu Y (2015) Optimization of alkaline pretreatment on corn stover for enhanced production of 1.3-propanediol and 2,3-butanediol by Klebsiella pneumoniae AJ4. Biomass Bioenerg 77:177–185
Hongyan C, Jinbao L, Xing C, Daming C, Yuan X, Ping L, Hualin L, Sheng H (2017) A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Process Technol 160:196–206
Inácio FD, Ferreira RO, Araujo CAV, Peralta RM, Souza CGM (2015) Production of enzymes and biotransformation of orange waste by oyster mushroom, Pleurotus pulmonarius (Fr.) Quél. Advan Microbio 5:1–8
Janusz G, Kucharzyk KH, Pawlik A, Staszczak M, Paszczynski AJ (2013) Fungal laccase, manganese peroxidase and lignin peroxidase: gene expression and regulation. Enzyme Microbial Technol 52:1–12
Jeevan P, Nelson R, Rena AE (2011) Optimization studies on acid hydrolysis of corn cob hemicellulosic hydrolysate for microbial production of xylitol. J Microbio Biotechnol Res 1:114–123
Jie Y, Nigel P, John B, Marcos M (2017) Cellulose, xylan and lignin interactions during pyrolysis of lignocellulosic biomass. Fuel 191:140–149
Junmeng C, Yifeng H, Xi Y, Scott WB, Yang Y, Xingguang Z, Yang Y, Ronghou L, Anthony VB (2017) Review of physicochemical properties and analytical characterization of lignocellulosic biomass. Renew Sustain Energy Rev 76:309–322
Kang Q, Appels L, Tan T, Dewil R (2014) Bioethanol from lignocellulosic biomass: current findings determine research priorities. Sci World J. doi:10.1155/2014/298153
Karp EM, Donohoe BS, O’Brien MH, Ciesielski PN, Mittal A, Biddy MJ, Beckham GT (2014) Alkaline pretreatment of Corn Stover: bench-scale fractionation and stream characterization. ACS Sustain Chem Eng 2:1481–1491
Kiiskinen LL, Rättö M, Kruus K (2004) Screening for novel laccase producing microbes. J Appl Microbiol 97:640–646
Kuwahara M, Glenn JK, Morgan MA, Gold MH (1984) Separations ans characterization of two extracellular H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Lett 169:247–250
McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Biores Technol 83:37–46
Michalska K, Bizukojc M, Ledakowicz S (2015) Pretreatment of energy crops with sodium hydroxide and cellulolytic enzymes to increase biogas production. Biomass Bioenerg 80:213–221
Michelin M, Polizeli MLTM, Ruzene DS, Silva DP, Vicente AA, Jorge JÁ, Terenzi HF, Teixeira JA (2012) Xylanase and-xylosidase production by Aspergillus ochraceus: new perspectives for the application of wheat straw autohydrolysis liquor. Appl Biochem Biotechnol 166:336–347
Michelin M, Ruiz HÁ, Silva DP, Ruzene DS, Teixeira JÁ, Polizeli MLTM (2014) Cellulose from lignocellulosic waste. Polysaccharides. 1ed. Heidelberg-Alemanha: Springer International Publishing, pp. 1–33
Miranda CS, Fiuza RP, Carvalho RF, José NM (2015) Effect of surface treatment on properties of bagasse piassava fiber Attalea funifera Martius. Quim Nova 38:161–165
Moretti MMS, Bocchini-Martins DA, Nunes CCC, Villena MA, Perrone OM, Silva R, Boscolo M, Gomes E (2014) Pretreatment of sugarcane bagasse with microwaves irradiation and its effects on the structure and on enzymatic hydrolysis. Appl Energy 122:189–195
Mtibe A, Linganiso LZ, Mathew AP, Oksman K, John MJ, Anandjiwala RD (2015) A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nanofibres. Carbohyd Polym 118:1–8
Niladevi KN, Jacob N, Prema P (2008) Evidence for a halotolerant-alkaline laccase in Streptomyces psammoticus: purification and characterization. Process Biochem 43:654–660
Ouyang X, Wang W, Yuan Q, Li S, Zhangb Q, Zhao P (2015) Improvement of lignin yield and purity from corncob in the presence of steam explosion and liquid hot pressured alcohol. R Soc Chem 5:61650–61656
Patrick F, Mtui G, Mshandete AM, Kivaisi A (2011) Optimization of laccase and manganese peroxidase production in submerged culture of Pleurotus sajor-caju. Afr J Biotech 10:10166–10177
Plácido J, Capareda S (2015) Ligninolytic enzymes: a biotechnological alternative for bioethanol production. Bioresour Bioprocess 2:23
Rabetafika HN, Bchir B, Blecker C, Paquot M, Wathelet B (2014) Comparative study of alkaline extraction process of hemicelluloses from pear pomace. Biomass Bioenerg 61:254–264
Rahnama N, Mamat S, Shah UKM, Ling FH, Rahman NAA, Ariff AB (2013) Effect of alkaline pretreatment of rice straw on cellulose an xylanase production by local Trichoderma harzianum SNRS3 under solid state fermentation. Bioresour 8:2881–2896
Rivas B, Moldes AB, Domínguez JM, Parajó JC (2004) Lactic acid production from corn cobs by simultaneous saccharification and fermentation: a mathematical interpretation. Enzyme Microbial Technol 34:627–634
Rodríguez S, Fernández M, Bermúdez RC, Morris H (2003) Tratamiento de efluentes industriales coloreados con Pleurotus spp. Revista Iberoamericana de Micología 20:164–168
Romanholo-Ferreira LF, Queijeiro-Lopez AM, Monteiro RR, Ruzene DS, Silva DP (2013) Biodegradation of vinasse: Fungal lignolytic enzymes and their application in the bioethanol industry. In: Maria De Lourdes T. M. Polizeli; Mahendra Rai. (Org.). Fungal Enzymes. 1ed.: Crc Press, 1: pp. 65–96
Ruiz LHA, Silva DP, Ruzene DS, Lima LF, Vicente AA, Teixeira JA (2012) Bioethanol production from hydrothermal pretreated wheat straw by a flocculating Saccharomyces cerevisiae strain effect of process conditions. Fuel (Guildford) 95:528–536
Ruzene DS, Silva DP, Vicente AA, Gonçalves AR, Teixeira JA (2008) An alternative application to the portuguese agro-industrial residue: wheat straw. Appl Biochem Biotechnol 147:85–96
Ruzene DS, Silva DP, Vicente AA, Teixeira JÁ, Pessoa De Amorim MT, Gonçalves AR (2009) Cellulosic films obtained from the treatment of sugarcane bagasse fibers with N-methylmorpholine-N-oxide (NMMO). Appl Biochem Biotechnol 154:38–47
Sahoo S, Seydibeyoglu MO, Mohanty AK, Misra M (2011) Characterization of industrial lignins for their utilization in future value added applications. Biomass Bioenerg 35:4230–4237
Shraddha SR, Sehgal S, Kamthania M, Kumar A (2011) Laccase: microbial sources, production, purification, and potential biotechnological applications. Enzyme Res 2011:1–11
Sun SN, Cao XF, Xu F, Sun RC, Jones GL, Bair M (2014) Structure and thermal property of alkaline hemicelluloses from steam exploded Phyllostachys pubescens. Carbohyd Polym 101:1191–1197
Szklarz G, Antibus RK, Sinsabaugh RL, Linkins AE (1989) Production of phenoloxidases and peroxidases by wood-rotting fungi. Mycologia 81:234–240
Tan C, Peng J, Lin W, Xing Y, Xu K, Wu J, Chen M (2015) Role of surface modification and mechanical orientation on property enhancement of cellulose nanocrystals/polymer nanocomposites. Eur Polymer J 62:186–197
Wu L, Arakane M, Ike M, Wada M, Takai T, Gau M, Tokuyasu K (2011) Low temperature alkali pretreatment for improving enzymatic digestibility of sweet sorghum bagasse for ethanol production. Biores Technol 102:4793–4799
Yan Z, Hideyo I, Lin Y, Michael EH, Melvin T, Lee M (2015) Breakdown of hierarchical architecture in cellulose during dilute acid pretreatments. Cellulose 22:1495–1504
Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Sci Technol Fuel Energy 86:1781–1788
Yi J, He T, Jiang Z, Li J, Hu C (2013) AlCl3 catalyzed conversion of hemicellulose in corn stover. Chin J Catal 34:2146–2152
Yoshida M, Liu Y, Uchida S, Kawarada K, Ukagami Y, Ichinose H, Kaneko S, Fukuda K (2008) Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosaccharides. Biosci Biotechnol Biochem 72:805–810
Zhang LM, Yuan TQ, Xu F, Sun RC (2013) Enhanced hydrophobicity and thermal stability of hemicelluloses by butyrylation in [BMIM] Cl ionic liquid. Ind Crops Prod 45:52–57
Acknowledgments
This work was supported by Foundation for Support to Innovation, Science and Technology of the State of Sergipe (FAPITEC-SE), State of Sao Paulo Research Foundation (FAPESP/Brazil), National Counsel of Technological and Scientific Development (CNPq/Brazil), Support Center for Scientific and Technological Research (S.C.S.T.R/C.A.C.T.I) Vigo University.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Menezes, D.B., Brazil, O.A.V., Romanholo-Ferreira, L.F. et al. Prospecting fungal ligninases using corncob lignocellulosic fractions. Cellulose 24, 4355–4365 (2017). https://doi.org/10.1007/s10570-017-1427-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10570-017-1427-2