Advertisement

Cellulose

, Volume 24, Issue 10, pp 4355–4365 | Cite as

Prospecting fungal ligninases using corncob lignocellulosic fractions

  • Diego B. Menezes
  • Osiris A. V. Brazil
  • Luiz F. Romanholo-Ferreira
  • Maria de Lourdes T. M. Polizeli
  • Denise S. Ruzene
  • Daniel P. Silva
  • Luiz P. Costa
  • Maria Lucila Hernández-MacedoEmail author
Original Paper

Abstract

Microorganisms play an important role in the bioconversion of organic residues and have therefore become promising for obtaining value-added enzymes. In an attempt to take advantage of the by-products and residues of bioconversion, this work sought to use lignocellulosic fractions extracted from corncob as fermentation substrate for ligninase induction by Pleurotus sajor-caju. To obtain the corncob lignocellulosic fractions, biomass was submitted to treatment by alkaline extraction (NaOH 0.75 mol L−1, 55 °C for 2 h) and organosolv (40% ethanol/water, 185 °C for 20 min). The in natura biomass and lignocellulosic fractions were used as substrates in the subsequent fermentation processes: 2% in natura corncob; 2% cellulose–lignin complex fraction; 2% lignin-enriched fraction; 1% lignin-enriched fraction; and synthetic medium fungal (SMF) as standard. Chemical and physical–chemical analyses indicated the effectiveness of the lignocellulosic extraction process. According to the results, the developed system promoted the induction of ligninases by P. sajor-caju. The enzymatic analysis showed laccase production (768 U L−1) using the 1% lignin-enriched fraction as substrate. Manganese peroxidase production was 1050 U L−1 with the use of the 2% lignin-enriched fraction. The presence of lignocellulosic fractions extracted from corncob’s lignin-enriched fraction in the culture medium favored the induction of ligninases in comparison to the use of residue alone.

Keywords

Lignocellulosic residue Laccase Manganese peroxidase Pleurotus sajor-caju 

Notes

Acknowledgments

This work was supported by Foundation for Support to Innovation, Science and Technology of the State of Sergipe (FAPITEC-SE), State of Sao Paulo Research Foundation (FAPESP/Brazil), National Counsel of Technological and Scientific Development (CNPq/Brazil), Support Center for Scientific and Technological Research (S.C.S.T.R/C.A.C.T.I) Vigo University.

References

  1. Bao W, Fukushima Y, Jensen KA (1994) Oxidative degradation of non phenolic lignin durin lipid peroxidation by fungal manganese peroxidase. FEBiS Lett 3:297–300CrossRefGoogle Scholar
  2. Barakat A, Chuetor S, Monlau F, Solhy A, Rouau X (2014) Eco-friendly dry chemo-mechanical pretreatments of lignocellulosic biomass: impact on energy and yield of the enzymatic hydrolysis. Appl Energy 113:97–105CrossRefGoogle Scholar
  3. Bensah EC, Mensah M (2013) Chemical pretreatment methods for the production of cellulosic ethanol: technologies and Innovations. Int J Chem Eng. doi: 10.1155/2013/719607 Google Scholar
  4. Bernardi E, Donini LP, Minotto E, Nascimento JS (2007) Utilização de diferentes substratos para a produção de inoculo de Pleurotus ostreatoroseus. Revis Ciênc Agron 38:84–89Google Scholar
  5. Buzała KP, Przybysz P, Kalinowska H, Przybysz K, Kucner M, Dubowik M (2016) Evaluation of pine kraft cellulosic pulps and fines from papermaking as potential feedstocks for biofuel production. Cellulose 23:649–659CrossRefGoogle Scholar
  6. Cao S, Aita GM (2013) Enzymatic hydrolysis and ethanol yields of combined surfactant and dilute ammonia treated sugarcane bagasse. Biores Technol 131:357–364CrossRefGoogle Scholar
  7. Chen X, Gu Y, Zhou X, Zhang Y (2014) Asparagus stem as a new lignocellulosic biomass feedstock for anaerobic digestion: increasing hydrolysis rate, methane production and biodegradability by alkaline pretreatment. Biores Technol 164:78–85CrossRefGoogle Scholar
  8. Corrêa RCG, Silva BP, Castoldi R, Kato CG, Sá-Nakanishi AB, Peralta RA, Souza CGM, Bracht A, Peralta RM (2016) Spent mushroom substrate of Pleurotus pulmonarius: a source of easily hydrolyzable lignocellulose. Folia Microbiol 5:1–10Google Scholar
  9. Dhouib A, Hamza M, Zouari H, Mechichi T, H’midi R, Labat M, Martínez MJ, Sayadi S (2005) Autochthonous fungal strains with high ligninolytic activities from Tunisian biotopes. Afr J Biotech 4:431–436Google Scholar
  10. Evstigneev EI (2011) Factors affecting lignin solubility. Macromolecular chemistry and polymeric materials. Russian J Appl Chem 84:1040–1045CrossRefGoogle Scholar
  11. Hong E, Kim D, Kim J, Kim J, Yoon S, Rhie S, Ha S, Ryu Y (2015) Optimization of alkaline pretreatment on corn stover for enhanced production of 1.3-propanediol and 2,3-butanediol by Klebsiella pneumoniae AJ4. Biomass Bioenerg 77:177–185CrossRefGoogle Scholar
  12. Hongyan C, Jinbao L, Xing C, Daming C, Yuan X, Ping L, Hualin L, Sheng H (2017) A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Process Technol 160:196–206CrossRefGoogle Scholar
  13. Inácio FD, Ferreira RO, Araujo CAV, Peralta RM, Souza CGM (2015) Production of enzymes and biotransformation of orange waste by oyster mushroom, Pleurotus pulmonarius (Fr.) Quél. Advan Microbio 5:1–8CrossRefGoogle Scholar
  14. Janusz G, Kucharzyk KH, Pawlik A, Staszczak M, Paszczynski AJ (2013) Fungal laccase, manganese peroxidase and lignin peroxidase: gene expression and regulation. Enzyme Microbial Technol 52:1–12CrossRefGoogle Scholar
  15. Jeevan P, Nelson R, Rena AE (2011) Optimization studies on acid hydrolysis of corn cob hemicellulosic hydrolysate for microbial production of xylitol. J Microbio Biotechnol Res 1:114–123Google Scholar
  16. Jie Y, Nigel P, John B, Marcos M (2017) Cellulose, xylan and lignin interactions during pyrolysis of lignocellulosic biomass. Fuel 191:140–149CrossRefGoogle Scholar
  17. Junmeng C, Yifeng H, Xi Y, Scott WB, Yang Y, Xingguang Z, Yang Y, Ronghou L, Anthony VB (2017) Review of physicochemical properties and analytical characterization of lignocellulosic biomass. Renew Sustain Energy Rev 76:309–322CrossRefGoogle Scholar
  18. Kang Q, Appels L, Tan T, Dewil R (2014) Bioethanol from lignocellulosic biomass: current findings determine research priorities. Sci World J. doi: 10.1155/2014/298153 Google Scholar
  19. Karp EM, Donohoe BS, O’Brien MH, Ciesielski PN, Mittal A, Biddy MJ, Beckham GT (2014) Alkaline pretreatment of Corn Stover: bench-scale fractionation and stream characterization. ACS Sustain Chem Eng 2:1481–1491CrossRefGoogle Scholar
  20. Kiiskinen LL, Rättö M, Kruus K (2004) Screening for novel laccase producing microbes. J Appl Microbiol 97:640–646CrossRefGoogle Scholar
  21. Kuwahara M, Glenn JK, Morgan MA, Gold MH (1984) Separations ans characterization of two extracellular H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Lett 169:247–250CrossRefGoogle Scholar
  22. McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Biores Technol 83:37–46CrossRefGoogle Scholar
  23. Michalska K, Bizukojc M, Ledakowicz S (2015) Pretreatment of energy crops with sodium hydroxide and cellulolytic enzymes to increase biogas production. Biomass Bioenerg 80:213–221CrossRefGoogle Scholar
  24. Michelin M, Polizeli MLTM, Ruzene DS, Silva DP, Vicente AA, Jorge JÁ, Terenzi HF, Teixeira JA (2012) Xylanase and-xylosidase production by Aspergillus ochraceus: new perspectives for the application of wheat straw autohydrolysis liquor. Appl Biochem Biotechnol 166:336–347CrossRefGoogle Scholar
  25. Michelin M, Ruiz HÁ, Silva DP, Ruzene DS, Teixeira JÁ, Polizeli MLTM (2014) Cellulose from lignocellulosic waste. Polysaccharides. 1ed. Heidelberg-Alemanha: Springer International Publishing, pp. 1–33Google Scholar
  26. Miranda CS, Fiuza RP, Carvalho RF, José NM (2015) Effect of surface treatment on properties of bagasse piassava fiber Attalea funifera Martius. Quim Nova 38:161–165Google Scholar
  27. Moretti MMS, Bocchini-Martins DA, Nunes CCC, Villena MA, Perrone OM, Silva R, Boscolo M, Gomes E (2014) Pretreatment of sugarcane bagasse with microwaves irradiation and its effects on the structure and on enzymatic hydrolysis. Appl Energy 122:189–195CrossRefGoogle Scholar
  28. Mtibe A, Linganiso LZ, Mathew AP, Oksman K, John MJ, Anandjiwala RD (2015) A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nanofibres. Carbohyd Polym 118:1–8CrossRefGoogle Scholar
  29. Niladevi KN, Jacob N, Prema P (2008) Evidence for a halotolerant-alkaline laccase in Streptomyces psammoticus: purification and characterization. Process Biochem 43:654–660CrossRefGoogle Scholar
  30. Ouyang X, Wang W, Yuan Q, Li S, Zhangb Q, Zhao P (2015) Improvement of lignin yield and purity from corncob in the presence of steam explosion and liquid hot pressured alcohol. R Soc Chem 5:61650–61656Google Scholar
  31. Patrick F, Mtui G, Mshandete AM, Kivaisi A (2011) Optimization of laccase and manganese peroxidase production in submerged culture of Pleurotus sajor-caju. Afr J Biotech 10:10166–10177Google Scholar
  32. Plácido J, Capareda S (2015) Ligninolytic enzymes: a biotechnological alternative for bioethanol production. Bioresour Bioprocess 2:23CrossRefGoogle Scholar
  33. Rabetafika HN, Bchir B, Blecker C, Paquot M, Wathelet B (2014) Comparative study of alkaline extraction process of hemicelluloses from pear pomace. Biomass Bioenerg 61:254–264CrossRefGoogle Scholar
  34. Rahnama N, Mamat S, Shah UKM, Ling FH, Rahman NAA, Ariff AB (2013) Effect of alkaline pretreatment of rice straw on cellulose an xylanase production by local Trichoderma harzianum SNRS3 under solid state fermentation. Bioresour 8:2881–2896CrossRefGoogle Scholar
  35. Rivas B, Moldes AB, Domínguez JM, Parajó JC (2004) Lactic acid production from corn cobs by simultaneous saccharification and fermentation: a mathematical interpretation. Enzyme Microbial Technol 34:627–634CrossRefGoogle Scholar
  36. Rodríguez S, Fernández M, Bermúdez RC, Morris H (2003) Tratamiento de efluentes industriales coloreados con Pleurotus spp. Revista Iberoamericana de Micología 20:164–168Google Scholar
  37. Romanholo-Ferreira LF, Queijeiro-Lopez AM, Monteiro RR, Ruzene DS, Silva DP (2013) Biodegradation of vinasse: Fungal lignolytic enzymes and their application in the bioethanol industry. In: Maria De Lourdes T. M. Polizeli; Mahendra Rai. (Org.). Fungal Enzymes. 1ed.: Crc Press, 1: pp. 65–96Google Scholar
  38. Ruiz LHA, Silva DP, Ruzene DS, Lima LF, Vicente AA, Teixeira JA (2012) Bioethanol production from hydrothermal pretreated wheat straw by a flocculating Saccharomyces cerevisiae strain effect of process conditions. Fuel (Guildford) 95:528–536CrossRefGoogle Scholar
  39. Ruzene DS, Silva DP, Vicente AA, Gonçalves AR, Teixeira JA (2008) An alternative application to the portuguese agro-industrial residue: wheat straw. Appl Biochem Biotechnol 147:85–96CrossRefGoogle Scholar
  40. Ruzene DS, Silva DP, Vicente AA, Teixeira JÁ, Pessoa De Amorim MT, Gonçalves AR (2009) Cellulosic films obtained from the treatment of sugarcane bagasse fibers with N-methylmorpholine-N-oxide (NMMO). Appl Biochem Biotechnol 154:38–47CrossRefGoogle Scholar
  41. Sahoo S, Seydibeyoglu MO, Mohanty AK, Misra M (2011) Characterization of industrial lignins for their utilization in future value added applications. Biomass Bioenerg 35:4230–4237CrossRefGoogle Scholar
  42. Shraddha SR, Sehgal S, Kamthania M, Kumar A (2011) Laccase: microbial sources, production, purification, and potential biotechnological applications. Enzyme Res 2011:1–11CrossRefGoogle Scholar
  43. Sun SN, Cao XF, Xu F, Sun RC, Jones GL, Bair M (2014) Structure and thermal property of alkaline hemicelluloses from steam exploded Phyllostachys pubescens. Carbohyd Polym 101:1191–1197CrossRefGoogle Scholar
  44. Szklarz G, Antibus RK, Sinsabaugh RL, Linkins AE (1989) Production of phenoloxidases and peroxidases by wood-rotting fungi. Mycologia 81:234–240CrossRefGoogle Scholar
  45. Tan C, Peng J, Lin W, Xing Y, Xu K, Wu J, Chen M (2015) Role of surface modification and mechanical orientation on property enhancement of cellulose nanocrystals/polymer nanocomposites. Eur Polymer J 62:186–197CrossRefGoogle Scholar
  46. Wu L, Arakane M, Ike M, Wada M, Takai T, Gau M, Tokuyasu K (2011) Low temperature alkali pretreatment for improving enzymatic digestibility of sweet sorghum bagasse for ethanol production. Biores Technol 102:4793–4799CrossRefGoogle Scholar
  47. Yan Z, Hideyo I, Lin Y, Michael EH, Melvin T, Lee M (2015) Breakdown of hierarchical architecture in cellulose during dilute acid pretreatments. Cellulose 22:1495–1504CrossRefGoogle Scholar
  48. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Sci Technol Fuel Energy 86:1781–1788Google Scholar
  49. Yi J, He T, Jiang Z, Li J, Hu C (2013) AlCl3 catalyzed conversion of hemicellulose in corn stover. Chin J Catal 34:2146–2152CrossRefGoogle Scholar
  50. Yoshida M, Liu Y, Uchida S, Kawarada K, Ukagami Y, Ichinose H, Kaneko S, Fukuda K (2008) Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosaccharides. Biosci Biotechnol Biochem 72:805–810CrossRefGoogle Scholar
  51. Zhang LM, Yuan TQ, Xu F, Sun RC (2013) Enhanced hydrophobicity and thermal stability of hemicelluloses by butyrylation in [BMIM] Cl ionic liquid. Ind Crops Prod 45:52–57CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Diego B. Menezes
    • 1
  • Osiris A. V. Brazil
    • 2
  • Luiz F. Romanholo-Ferreira
    • 2
  • Maria de Lourdes T. M. Polizeli
    • 3
  • Denise S. Ruzene
    • 4
  • Daniel P. Silva
    • 4
  • Luiz P. Costa
    • 1
    • 2
    • 5
  • Maria Lucila Hernández-Macedo
    • 1
    • 2
    Email author
  1. 1.Postgraduate Program in Industrial BiotechnologyUniversity TiradentesAracajuBrazil
  2. 2.Institute of Technology and ResearchUniversity TiradentesAracajuBrazil
  3. 3.Department of Biology/FFCLRPUniversity of São PauloRibeirão PretoBrazil
  4. 4.Center for Exact Sciences and TechnologyFederal University of SergipeSão CristóvãoBrazil
  5. 5.Technological Institute and Research of the State of SergipeAracajuBrazil

Personalised recommendations