, Volume 24, Issue 10, pp 4123–4137 | Cite as

Structure and properties of regenerated cellulose fibers from aqueous NaOH/thiourea/urea solution

  • Yanping Yang
  • Yue ZhangEmail author
  • Ahmed Dawelbeit
  • Ya Deng
  • Yuxi Lang
  • Muhuo YuEmail author
Original Paper


Regenerated cellulose fibers were successfully prepared through dissolving cotton linters in NaOH/thiourea/urea aqueous solution at −2 °C by a twin-screw extruder and wet-spinning process at varying precipitation and drawing conditions. The dissolution process of an optimized 7 wt% cellulose was controlled by polarizing microscopy and resulted in a transparent and stable cellulose spinning dope. Rheological investigations showed a classical shear thinning behavior of the cellulose/NaOH/thiourea/urea solution and a good stability towards gelation. Moreover, the mechanical properties, microstructures and morphology of the regenerated cellulose fibers were studied extensively by single fiber tensile testing, X-ray diffraction, synchrotron X-ray investigations, birefringence measurements and field-emission scanning electron microscopy. Resulting fibers demonstrated a smooth surface and circular cross-section with homogeneous morphological structure as compared with commercial viscose rayon. At optimized jet stretch ratio, acidic coagulation composition and temperature, the structural features and tensile properties depend first of all on the drawing ratio. In particular the crystallinity and orientation of the novel fibers rise with increasing draw ratio up to a maximum followed by a reduction due to over-drawing and oriented crystallites disruption. The microvoids in the fiber as analysed with SAXS were smaller and more elongated with increasing drawing ratio. Moreover, a higher tensile strength (2.22 cN/dtex) was obtained in the regenerated fiber than that of the viscose rayon (2.13 cN/dtex), indicating higher crystallinity and orientation, as well as more elongated and orientated microvoid in the regenerated fiber. All in all, the novel extruder-based method is beneficial with regard to the dissolution temperature and a simplified production process. Taking into account the reasonable fiber properties from the lab-trials, the suggested dissolution and spinning route may offer some prospects as an alternative cellulose processing route.


Twin-screw extruder Regenerated cellulose fibers Wet-spinning Structure and properties Alkali complex solvent 



This work was supported by National Natural Science Foundation of China (51503032) and Shanghai Sailing Program (14YF1405200).


  1. Budtova T, Navard P (2016) Cellulose in NaOH–water based solvents: a review. Cellulose 23:5–55. doi: 10.1007/s10570-015-0779-8 CrossRefGoogle Scholar
  2. Cai J et al (2007) Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure and properties. Adv Mater 19:821–825. doi: 10.1002/adma.200601521 CrossRefGoogle Scholar
  3. Chen XM, Burger C, Fang DF, Ruan D, Zhang LN, Hsiao BS, Chu B (2006) X-ray studies of regenerated cellulose fibers wet spun from cotton linter pulp in NaOH/thiourea aqueous solutions. Polymer 47:2839–2848. doi: 10.1016/j.polymer.2006.02.044 CrossRefGoogle Scholar
  4. Chundawat SPS, Beckham GT, Himmel ME, Dale BE (2011) Deconstruction of lignocellulosic biomass to fuels and chemicals. In: Prausnitz JM (ed) Annual review of chemical and biomolecular engineering, vol 2. pp 121–145. doi: 10.1146/annurev-chembioeng-061010-114205
  5. Crawshaw J, Cameron RE (2000) A small angle X-ray scattering study of pore structure in Tencel ® cellulose fibres and the effects of physical treatments. Polymer 41:4691–4698. doi: 10.1016/s0032-3861(99)00502-9 CrossRefGoogle Scholar
  6. Cross CF, Bevan ET, Beadle C (1893) Thiokohlensäureester der cellulose. Ber Dtsch Chem Ges 26:1090–1097. doi: 10.1002/cber.189302601230 CrossRefGoogle Scholar
  7. Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524. doi: 10.1016/s0079-6700(01)00025-9 CrossRefGoogle Scholar
  8. Fink HP, Ganster J, Lehmann A (2014) Progress in cellulose shaping: 20 years industrial case studies at Fraunhofer IAP. Cellulose 21:31–51. doi: 10.1007/s10570-013-0137-7 CrossRefGoogle Scholar
  9. Fischer EW, Herchenröder P, Manley RSJ, Stamm M (1978) Small-angle neutron scattering of selectively deuterated cellulose. Macromolecules 11:213–217. doi: 10.1021/ma60061a039 CrossRefGoogle Scholar
  10. Fraser RDB, Macrae TP, Miller A, Rowlands RJ (1976) Digital processing of fiber diffraction patterns. J Appl Crystallogr 9:81–94CrossRefGoogle Scholar
  11. Fu FY, Yang QL, Zhou JP, Hu HZ, Jia BQ, Zhang LN (2014) Structure and properties of regenerated cellulose filaments prepared from cellulose carbamate–NaOH/ZnO aqueous solution. ACS Sustain Chem Eng 2:2604–2612. doi: 10.1021/sc500559g CrossRefGoogle Scholar
  12. Fushimi F, Watanabe T, Hiyoshi T, Yamashita Y, Osakai T (1996) Role of interfacial potential in coagulation of cuprammonium cellulose solution. J Appl Polym Sci 59:15–21. doi: 10.1002/(sici)1097-4628(19960103)59:1<15:aid-app3>;2-p CrossRefGoogle Scholar
  13. Guiner A, Fournet G (1955) Small angle scattering of X-rays. Wiley, New YorkGoogle Scholar
  14. Gutowski KE, Broker GA, Willauer HD, Huddleston JG, Swatloski RP, Holbrey JD, Rogers RD (2003) Controlling the aqueous miscibility of ionic liquids: aqueous biphasic systems of water-miscible ionic liquids and water-structuring salts for recycle, metathesis, and separations. J Am Chem Soc 125:6632–6633. doi: 10.1021/ja0351802 CrossRefGoogle Scholar
  15. Hauru LKJ, Hummel M, Michud A, Sixta H (2014) Dry jet-wet spinning of strong cellulose filaments from ionic liquid solution. Cellulose 21:4471–4481. doi: 10.1007/s10570-014-0414-0 CrossRefGoogle Scholar
  16. Isik M, Sardon H, Mecerreyes D (2014) Ionic liquids and cellulose: dissolution, chemical modification and preparation of new cellulosic materials. Int J Mol Sci 15:11922–11940. doi: 10.3390/ijms150711922 CrossRefGoogle Scholar
  17. Isogai A, Atalla RH (1998) Dissolution of cellulose in aqueous NaOH solutions. Cellulose 5:309–319. doi: 10.1023/A:1009272632367 CrossRefGoogle Scholar
  18. Jiang GS et al (2012) Analysis of regenerated cellulose fibers with ionic liquids as a solvent as spinning speed is increased. Cellulose 19:1075–1083. doi: 10.1007/s10570-012-9716-2 CrossRefGoogle Scholar
  19. Jiang ZW et al (2014) Intermolecular interactions and 3D structure in cellulose-NaOH-urea aqueous system. J Phys Chem B 118:10250–10257. doi: 10.1021/jp501408e CrossRefGoogle Scholar
  20. Jin HJ, Zha CX, Gu LX (2007) Direct dissolution of cellulose in NaOH/thiourea/urea aqueous solution. Carbohydr Res 342:851–858. doi: 10.1016/j.carres.2006.12.023 CrossRefGoogle Scholar
  21. Kaburagi M, Bin Y, Zhu D, Xu C, Matsuo M (2003) Small angle X-ray scattering from voids within fibers during the stabilization and carbonization stages. Carbon 41:915–926. doi: 10.1016/S0008-6223(02)00407-4 CrossRefGoogle Scholar
  22. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem 44:3358–3393. doi: 10.1002/anie.200460587 CrossRefGoogle Scholar
  23. Klug HP, Alexander LE (1954) X-ray diffraction procedures, vol 2. Wiley, New YorkGoogle Scholar
  24. Kong K, Eichhorn SJ (2005) Crystalline and amorphous deformation of process-controlled cellulose-II fibres. Polymer 46:6380–6390. doi: 10.1016/j.polymer.2005.04.096 CrossRefGoogle Scholar
  25. Kong K, Davies RJ, Mcdonald MA, Young RJ, Wilding MA, Ibbett RN, Eichhorn SJ (2007) Influence of domain orientation on the mechanical properties of regenerated cellulose fibers. Biomacromolecules 8:624–630. doi: 10.1021/bm060877b CrossRefGoogle Scholar
  26. Lindman B, Karlstrom G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156:76–81. doi: 10.1016/j.molliq.2010.04.016 CrossRefGoogle Scholar
  27. Northolt MG, Boerstoel H, Maatman H, Huisman R, Veurink J, Elzerman H (2001) The structure and properties of cellulose fibres spun from an anisotropic phosphoric acid solution. Polymer 42:8249–8264. doi: 10.1016/S0032-3861(01)00211-7 CrossRefGoogle Scholar
  28. Oh SY et al (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391. doi: 10.1016/j.carres.2005.08.007 CrossRefGoogle Scholar
  29. Olaf Aaserud MD et al (1990) Carbon disulfide exposure and neurotoxic sequelae among viscose rayon workers. Am J Ind Med 18:25–37. doi: 10.1002/ajim.4700180104 CrossRefGoogle Scholar
  30. Qi HS, Cai J, Zhang LN, Nishiyama Y, Rattaz A (2007) Influence of finishing oil on structure and properties of multi-filament fibers from cellulose dope in NaOH/urea aqueous solution. Cellulose 15:81–89. doi: 10.1007/s10570-007-9142-z CrossRefGoogle Scholar
  31. Qin XZ, Lu A, Zhang LN (2012) Effect of stirring conditions on cellulose dissolution in NaOH/urea aqueous solution at low temperature. J Appl Polym Sci 126:E470–E477. doi: 10.1002/app.36992 CrossRefGoogle Scholar
  32. Ran S, Fang D, Zong X, Hsiao BS, Chu B, Cunniff PM (2001) Structural changes during deformation of Kevlar fibers via on-line synchrotron SAXS/WAXD techniques. Polymer 42:1601–1612. doi: 10.1016/S0032-3861(00)00460-2 CrossRefGoogle Scholar
  33. Reddy N, Yang Y (2015) The N-methylmorpholine-N-oxide (NMMO) process of producing regenerated fibers. Springer, BerlinCrossRefGoogle Scholar
  34. Rojas OJ (2016) Cellulose chemistry and properties: fibers, nanocelluloses and advanced materials. Springer International Publishing, ChamGoogle Scholar
  35. Rosenau T, Potthast A, Sixta H, Kosma P (2001) The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (Lyocell process). Prog Polym Sci 26:1763–1837. doi: 10.1016/s0079-6700(01)00023-5 CrossRefGoogle Scholar
  36. Ruland W (1969) Small-angle scattering studies on carbonized cellulose fibers †. J Polym Sci Part C Polym Symp 28:143–151. doi: 10.1002/polc.5070280113 CrossRefGoogle Scholar
  37. Sahiner N, Demirci S (2017) Natural microgranular cellulose as alternative catalyst to metal nanoparticles for H-2 production from NaBH4 methanolysis. Appl Catal B Environ 202:199–206. doi: 10.1016/j.apcatb.2016.09.028 CrossRefGoogle Scholar
  38. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494. doi: 10.1007/s10570-010-9405-y CrossRefGoogle Scholar
  39. Sixta H et al (2015) Ioncell-F: a high-strength regenerated cellulose fibre. Nord Pulp Pap Res J 30:43–57CrossRefGoogle Scholar
  40. Sun HB, Miao JJ, Yu YQ, Zhang LP (2015) Dissolution of cellulose with a novel solvent and formation of regenerated cellulose fiber. Appl Phys A 119:539–546. doi: 10.1007/s00339-015-8986-6 CrossRefGoogle Scholar
  41. Swatloski RP, Spear SK, Hobrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975. doi: 10.1021/ja025790m CrossRefGoogle Scholar
  42. Vehviläinen M, Kamppuri T, Grönqvist S, Rissanen M, Maloney T, Honkanen M, Nousiainen P (2015) Dissolution of enzyme-treated cellulose using freezing–thawing method and the properties of fibres regenerated from the solution. Cellulose 22:1653–1674. doi: 10.1007/s10570-015-0632-0 CrossRefGoogle Scholar
  43. Wanasekara ND, Michud A, Zhu C, Rahatekar S, Sixta H, Eichhorn SJ (2016) Deformation mechanisms in ionic liquid spun cellulose fibers. Polymer 99:222–230. doi: 10.1016/j.polymer.2016.07.007 CrossRefGoogle Scholar
  44. Wang WC, Li FX, Yu JY, Navard P, Budtova T (2015) Structure and properties of novel cellulose-based fibers spun from aqueous NaOH solvent under various drawing conditions. Cellulose 22:1333–1345. doi: 10.1007/s10570-015-0544-z CrossRefGoogle Scholar
  45. Wang S, Lu A, Zhang LN (2016) Recent advances in regenerated cellulose materials. Prog Polym Sci 53:169–206. doi: 10.1016/j.progpolymsci.2015.07.003 CrossRefGoogle Scholar
  46. Yang YP, Zhang Y, Dawelbeit A, Yu MH (2016) Dissolving cellulose with twin-screw extruder in a NaOH complex aqueous solution. In: 2016 global conference on polymer and composite materials, PCM 2016, 20–23 May 2016, Hangzhou, China. IOP conference series: materials science and engineering. Institute of Physics Publishing, p Ningbo Adhesives and Products Industry Association; Wuhan Advanced Materials Society. doi: 10.1088/1757-899X/137/1/012067
  47. Zhang S, Li FX, Yu JY, Gu LX (2009) Novel fibers prepared from cellulose in NaOH/thiourea/urea aqueous solution. Fibers Polym 10:34–39. doi: 10.1007/s12221-009-0034-8 CrossRefGoogle Scholar
  48. Zhang S, Li FX, Yu JY, Hsieh YL (2010) Dissolution behaviour and solubility of cellulose in NaOH complex solution. Carbohydr Polym 81:668–674. doi: 10.1016/j.carbpol.2010.03.029 CrossRefGoogle Scholar
  49. Zhu C et al (2016) High modulus regenerated cellulose fibers spun from a low molecular weight microcrystalline cellulose solution. ACS Sustain Chem Eng 4:4545–4553. doi: 10.1021/acssuschemeng.6b00555 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghaiChina

Personalised recommendations