Skip to main content
Log in

Bioconversion of cellulose and simultaneous production of thermoactive exo- and endoglucanases by Fusarium oxysporum

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Saccharification of cellulose is a promising method for production of biofuels. However, low bioconversion efficiency of cellulose to soluble sugars is a major challenge. In this study, a cellulolytic strain of Fusarium oxysporum was cultivated on pure cellulosic substrates (avicel, α-cellulose, carboxymethylcellulose and methylcellulose) and conversion efficiency into glucose was investigated. Production of exo- and endoglucanases during the bioconversion process was evaluated. Influence of pH on saccharification of cellulose and enzyme production by F. oxysporum were determined. Highest yield of glucose (1.76 μmol/ml) was obtained from F. oxysporum on methyl cellulose at 192 h under basal conditions. Liberated glucose under optimized condition of pH 6.0 at 96 h of fermentation was 2.12 μmol/ml with maximum production of exo- and endoglucanases (23.70 and 34.72 U/mg protein, respectively). The crude exo- and endoglucanases had optimum activities at pH 8.0, 70 °C and pH 7.0, 50 °C, respectively. The enzymes were stable over pH of 4.0–7.0 with relative residual activity above 60% after 1 h incubation. Exoglucanase activity was enhanced by Ca2+ and Cu2+ at 5 mM and Mg2+ at 10 mM. Endoglucanase activity was greatly enhanced in the presence of Mn2+, Ca2+, Mg2+, Cu2+ and Fe3+ at 5 and 10 mM. Activities of both enzymes were inhibited in the presence of Hg2+ at 5 and 10 mM. Results show that F. oxysporum possessed good cellulolytic enzyme system for efficient conversion of cellulose. Exhibited thermotolerance of exoglucanase with the striking tolerance of endoglucanase to metal ions demonstrate potentials of enzymes for biofuel industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alrumman SA (2016) Enzymatic saccharification and fermentation of cellulosic date palm wastes to glucose and lactic acid. Braz J Microbiol 47:110–119. doi:10.1016/j.bjm.2015.11.015

    Article  CAS  Google Scholar 

  • Azzeddine B, Abdelaziz M, Estelle C, Mouloud K, Nawel B, Nabila B, Francis D, Said B (2013) Optimization and partial characterization of endoglucanase produced by Streptomyces sp. B-Png23. Arch Biol Sci 65:549–558

    Article  Google Scholar 

  • Behera BC, Parida S, Dutta SK, Thatoi HN (2014) Isolation and identification of cellulose degrading bacteria from mangrove soil of Mahanadi river delta and their cellulase production ability. Afr J Microbiol Res 2:41–46. doi:10.12691/ajmr-2-1-6

    Article  Google Scholar 

  • Bhattacharya S, Das A, Patnaik A, Bokada P, Rajan SS (2014) Submerged fermentation and characterization of carboxymethylcellulase from a rhizospheric isolate of Trichoderma viride associated with Azadirachta indica. J Sci Ind Res 73:225–230

    CAS  Google Scholar 

  • Boraston AB, Bolam DN, Gilbert HJ, Davies GJ (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382:769–781. doi:10.1042/BJ20040892

    Article  CAS  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  Google Scholar 

  • Brijwani K, Vadlani PV (2011) Cellulolytic enzymes production via solid-state fermentation: effect of pretreatment methods on physicochemical characteristics of substrate. Enzym Res 10:4061–860134. doi:10.4061/2011/860134

    Google Scholar 

  • Cheng N, Koda K, Tamai Y, Yamamoto Y, Takasuka TE, Uraki Y (2017) Optimization of simultaneous saccharification and fermentation conditions with amphipathic lignin derivatives for concentrated bioethanol production. Bioresour Technol 232:126–132

    Article  CAS  Google Scholar 

  • Ciolacu D, Ciolacu F, Popa VI (2008) Supramolecular structure—a key parameter for cellulose biodegradation. Macromol Symp 272:136–142. doi:10.1002/masy.200851220

    Article  CAS  Google Scholar 

  • Dar RA, Iram S, Mohd S, Manisha KS, Avinash BA, Shabir AR, Parvaiz HQ (2013) Isolation, purification and characterization of carboxyl cellulase (CMCase) from endophytic F. oxysporum producing podophyllotoxin. Adv Enzym Res 1:91–96. doi:10.4236/aer.2013.14010

    Article  Google Scholar 

  • Gao J, Weng H, Zhu D, Yuan M, Guan F, Xi Y (2008) Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of corn stover. Bioresour Technol 99:7623–7629. doi:10.1016/j.biortech.2008.02.005

    Article  CAS  Google Scholar 

  • Gasparotto JM, Werle LB, Foletto EL, Kuhn RC, Jahn SL, Mazutti MA (2015) Production of cellulolytic enzymes and application of crude enzymatic extract for saccharification of lignocellulosic biomass. Appl Biochem Biotechnol 175:560–572

    Article  CAS  Google Scholar 

  • Guo Y-P, Fan S-Q, Fan Y-T, Pan C-M, Hou H-W (2010) The preparation and application of crude cellulase for cellulose-hydrogen production by anaerobic fermentation. Int J Hydrog Energy 35:459–468. doi:10.1016/j.ijhydene.2009.10.021

    Article  CAS  Google Scholar 

  • Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS (2010) Cellulose crystallinity—a key predictor of the enzymatic hydrolysis rate. FEBS J 277:1571–1582. doi:10.1111/j.1742-4658.2010.07585.x

    Article  CAS  Google Scholar 

  • Ibrahim MF, Razak MNA, Phang LY, Hassan MA, Abd-Aziz S (2013) Crude cellulase from oil palm empty fruit bunch by Trichoderma asperellum UPM1 and Aspergillus fumigatus UPM2 for fermentable sugars production. Appl Biochem Biotechnol 170:1320. doi:10.1007/s12010-013-0275-2

    Article  CAS  Google Scholar 

  • Kachlishvili E, Khardziani T, Metreveli E, Kobakhidze A, Elisashvili V (2012) Screening of basidiomycetes for the production of lignocellulosic enzymes during fermentation of food wastes. J Waste Convers Bioprod Biotechnol 1:9–15. doi:10.5147/jpgs.2012.0078

    Google Scholar 

  • Karnchanatat A, Petsom A, Sangvanich P et al (2008) A novel thermostable endoglucanase from the wood-decaying fungus Daldinia eschscholzii (Ehenb:Fr.) Rehm. Enzym Microb Technol 42:404–413

    Article  CAS  Google Scholar 

  • Kostylev M, Wilson DB (2012) Synergistic interactions in cellulose hydrolysis. Rev Biofuels 3:61–70. doi:10.4155/bfs.11.150

    Article  CAS  Google Scholar 

  • Lopez CG, Rogers SE, Colby RH, Graham P, Cabral JT (2015) Structure of sodium carboxymethyl cellulose aqueous solutions: A SANS and rheology study. J Polym Sci Part B Polym Phys 53:492–501. doi:10.1002/polb.23657

    Article  CAS  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  CAS  Google Scholar 

  • McNamara JT, Morgan JLW, Zimmer J (2015) A molecular description of cellulose biosynthesis. Annu Rev Biochem 84:895–921. doi:10.1146/annurev-biochem-060614-033930

    Article  CAS  Google Scholar 

  • Merino S, Cherry J (2007) Progress and challenges in enzyme development for biomass utilization. Adv Biochem Eng Biotechnol 108:95–120. doi:10.1007/10.2007.066

    CAS  Google Scholar 

  • Miller GM (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. doi:10.1021/ac60147a030

    Article  CAS  Google Scholar 

  • Mrudula S, Murugammal R (2011) Production of cellulase by Aspergillus niger under submerged and solid state fermentation using coir waste as a substrate. Braz J Microbiol 42:1119–1127. doi:10.1590/S1517-838220110003000033

    Article  Google Scholar 

  • Mukherjee S, Moumita K, Rina R (2011) Production of extracellular exoglucanase by Rhizopus oryzae from submerged fermentation of agro-waste. Recent Res Sci Technol 3:69–75

    CAS  Google Scholar 

  • Olajuyigbe FM, Ogunyewo OA (2016) Enhanced production and physicochemical properties of thermostable crude cellulase from Sporothix carnis grown on corn cob. Biocatal Agric Biotechnol 7:110–117. doi:10.1016/j.bcab.2016.05.012

    Google Scholar 

  • Olajuyigbe FM, Nlekerem CM, Ogunyewo OA (2016) Production and characterization of highly thermostable B-glucosidase during the biodegradation of methylcellulose by Fusarium oxysporum. Biochem Res Int 3978124:1–8. doi:10.1155/2016/3978124

    Article  Google Scholar 

  • Papke RT, Ward DM (2004) The importance of physical isolation to microbial diversification. FEMS Microbiol Ecol 48:293–303. doi:10.1016/j.femsec.2004.03.013

    Article  CAS  Google Scholar 

  • Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Ståhlberg J, Beckham GT (2015) Fungal cellulases. Chem Rev 115:1308–1448. doi:10.1021/cr500351c

    Article  CAS  Google Scholar 

  • Peciulyte A, Anasontzis GE, Karlstrom K, Larsson PT, Olsson L (2014) Morphology and enzyme production of Trichoderma reesei Rut C-30 are affected by the physical and structural characteristics of cellulosic substrates. Fungal Genet Biol 72:64–72. doi:10.1016/j.fgb.2014.07.011

    Article  CAS  Google Scholar 

  • Pirota R, Delabona P, Farinas C (2014) Enzymatic hydrolysis of sugarcane bagasse using enzyme extract and whole solid-state fermentation medium of two newly isolated strains of aspergillus oryzae. Chem Eng Trans 38:259–264. doi:10.3303/CET1438044

    Google Scholar 

  • Rahnama N, Foo HL, Abdul Rahman NA, Ariff A, Md Shah UK (2014) Saccharification of rice straw by cellulase from a local Trichoderma harzianum SNRS3 for biobutanol production. BMC Biotechnol 14:103. doi:10.1186/s12896-014-0103-y

    Article  Google Scholar 

  • Ramanathan G, Bhanupriya S, Abirami D (2010) Production and optimization of cellulase from Fusarium oxysporum by submerged fermentation. J Sci Ind Res 69:454–459

    CAS  Google Scholar 

  • Saha BC (2004) Production, purification and properties of endoglucanase from a newly isolated strain of Mucor circinelloides. Process Biochem 39:1871–1876. doi:10.1016/j.procbio.2003.09.013

    Article  CAS  Google Scholar 

  • Salahuddin K, Ram P, Suresh GH, Manish VD, Virendra SK, Dilshad HM (2012) Biochemical characterization of thermostable cellulase enzyme from mesophilic strains of actinomycete. Afr J Biotechnol 11:10125–10134. doi:10.5897/AJB11.3734

    CAS  Google Scholar 

  • Sarao LK, Arora M, Sehgal VK (2010) Use of Scopulariopsis acremonium for the production of cellulose and xylanase though submerged fermentation. Afr J Microbiol Res 4:1506–1510

    CAS  Google Scholar 

  • Seki Y, Kikuchi Y, Kimura Y, Yoshimoto R, Takahashi M, Aburai K et al (2015) Enhancement of cellulose degradation by Cattle Saliva. PLoS ONE 10(9):e0138902. doi:10.1371/journal.pone.0138902

    Article  Google Scholar 

  • Shahzadi T, Anwar Z, Iqbal Z, Anjum A, Aqil T, Bakhtawar AA, Kamran M, Mehmood S, Irshad M (2014) Induced production of exoglucanase, and β-glucosidase from fungal co-culture of T. viride and G. lucidum. Adv Biosci Biotechnol 5:426–433. doi:10.4236/abb.2014.55051

    Article  CAS  Google Scholar 

  • Soni KS, Soni R (2010) Regulation of cellulase synthesis in Chaetomium erraticum. BioResources 5:81–98

    CAS  Google Scholar 

  • Sonia S, Saksham G (2014) Optimization of cultural parameters for cellulase enzyme production from fungi. J Biol Life Sci 2:989–996

    Google Scholar 

  • Sukumaran RK, Surender VJ, Sindhu R, Binod P, Janu KU, Sajna KV, Rajasree KP, Pandey A (2010) Lignocellulosic ethanol in India: prospects, challenges and feedstock availability. Bioresour Technol 101:4826–4833. doi:10.1016/j.biortech.2009.11.049

    Article  CAS  Google Scholar 

  • Sun B, Wang X, Wang F, Jiang Y, Zhang X (2013) Assessing the relative effects of geographic location and soil type on microbial communities associated with straw decomposition. Appl Environ Microbiol 79:3327–3335. doi:10.1128/AEM.00083-13

    Article  CAS  Google Scholar 

  • Szymańska-Chargot M, Cybulska J, Zdunek A (2011) Sensing the structural differences in cellulose from apple and bacterial cell wall materials by Raman and FT-IR spectroscopy. Sensors 11:5543–5560

    Article  Google Scholar 

  • Tarek AAM (2007) Optimization of cellulase and β-glucosidase induction by sugarbeet pathogen Sclerotium rolfsii. Afr J Biotechnol 6:1048–1054. doi:10.5897/AJB2007.000-2135

    Google Scholar 

  • Wipusaree N, Sihanonth P, Piapukiew J, Sangvanich P, Karnchanatat A (2011) Purification and characterization of a xylanase from the endophytic fungus Alternaria alternata isolated from the Thai medicinal plant, Croton oblongfolius Roxb. Afr J Microbiol Res 5:5697–5712. doi:10.5897/AJMR11.1037

    CAS  Google Scholar 

  • Wood TM, Bhat KM (1998) Method for measuring cellulase activities. In: Wood WA, Kellogg JA (eds) Methods in Enzymology: Cellulose and Hemicellulose, vol 160. Academic Press, New York, pp 87–112

    Chapter  Google Scholar 

  • Zhao L, Cao G-L, Wang A-J, Ren H-Y, Xu C-J, Ren N-Q (2013) Enzymatic saccharification of cornstalk by onsite cellulases produced by Trichoderma viride for enhanced biohydrogen production. GCB Bioenergy 5:591–598. doi:10.1111/gcbb.12022

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Folasade M. Olajuyigbe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olajuyigbe, F.M. Bioconversion of cellulose and simultaneous production of thermoactive exo- and endoglucanases by Fusarium oxysporum . Cellulose 24, 4325–4336 (2017). https://doi.org/10.1007/s10570-017-1417-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1417-4

Keywords

Navigation