, Volume 24, Issue 10, pp 4325–4336 | Cite as

Bioconversion of cellulose and simultaneous production of thermoactive exo- and endoglucanases by Fusarium oxysporum

  • Folasade M. OlajuyigbeEmail author
Original Paper


Saccharification of cellulose is a promising method for production of biofuels. However, low bioconversion efficiency of cellulose to soluble sugars is a major challenge. In this study, a cellulolytic strain of Fusarium oxysporum was cultivated on pure cellulosic substrates (avicel, α-cellulose, carboxymethylcellulose and methylcellulose) and conversion efficiency into glucose was investigated. Production of exo- and endoglucanases during the bioconversion process was evaluated. Influence of pH on saccharification of cellulose and enzyme production by F. oxysporum were determined. Highest yield of glucose (1.76 μmol/ml) was obtained from F. oxysporum on methyl cellulose at 192 h under basal conditions. Liberated glucose under optimized condition of pH 6.0 at 96 h of fermentation was 2.12 μmol/ml with maximum production of exo- and endoglucanases (23.70 and 34.72 U/mg protein, respectively). The crude exo- and endoglucanases had optimum activities at pH 8.0, 70 °C and pH 7.0, 50 °C, respectively. The enzymes were stable over pH of 4.0–7.0 with relative residual activity above 60% after 1 h incubation. Exoglucanase activity was enhanced by Ca2+ and Cu2+ at 5 mM and Mg2+ at 10 mM. Endoglucanase activity was greatly enhanced in the presence of Mn2+, Ca2+, Mg2+, Cu2+ and Fe3+ at 5 and 10 mM. Activities of both enzymes were inhibited in the presence of Hg2+ at 5 and 10 mM. Results show that F. oxysporum possessed good cellulolytic enzyme system for efficient conversion of cellulose. Exhibited thermotolerance of exoglucanase with the striking tolerance of endoglucanase to metal ions demonstrate potentials of enzymes for biofuel industry.


Bioconversion Cellulose Fusarium oxysporum Endoglucanase Exoglucanase Glucose 


  1. Alrumman SA (2016) Enzymatic saccharification and fermentation of cellulosic date palm wastes to glucose and lactic acid. Braz J Microbiol 47:110–119. doi: 10.1016/j.bjm.2015.11.015 CrossRefGoogle Scholar
  2. Azzeddine B, Abdelaziz M, Estelle C, Mouloud K, Nawel B, Nabila B, Francis D, Said B (2013) Optimization and partial characterization of endoglucanase produced by Streptomyces sp. B-Png23. Arch Biol Sci 65:549–558CrossRefGoogle Scholar
  3. Behera BC, Parida S, Dutta SK, Thatoi HN (2014) Isolation and identification of cellulose degrading bacteria from mangrove soil of Mahanadi river delta and their cellulase production ability. Afr J Microbiol Res 2:41–46. doi: 10.12691/ajmr-2-1-6 CrossRefGoogle Scholar
  4. Bhattacharya S, Das A, Patnaik A, Bokada P, Rajan SS (2014) Submerged fermentation and characterization of carboxymethylcellulase from a rhizospheric isolate of Trichoderma viride associated with Azadirachta indica. J Sci Ind Res 73:225–230Google Scholar
  5. Boraston AB, Bolam DN, Gilbert HJ, Davies GJ (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382:769–781. doi: 10.1042/BJ20040892 CrossRefGoogle Scholar
  6. Bradford MM (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi: 10.1016/0003-2697(76)90527-3 CrossRefGoogle Scholar
  7. Brijwani K, Vadlani PV (2011) Cellulolytic enzymes production via solid-state fermentation: effect of pretreatment methods on physicochemical characteristics of substrate. Enzym Res 10:4061–860134. doi: 10.4061/2011/860134 Google Scholar
  8. Cheng N, Koda K, Tamai Y, Yamamoto Y, Takasuka TE, Uraki Y (2017) Optimization of simultaneous saccharification and fermentation conditions with amphipathic lignin derivatives for concentrated bioethanol production. Bioresour Technol 232:126–132CrossRefGoogle Scholar
  9. Ciolacu D, Ciolacu F, Popa VI (2008) Supramolecular structure—a key parameter for cellulose biodegradation. Macromol Symp 272:136–142. doi: 10.1002/masy.200851220 CrossRefGoogle Scholar
  10. Dar RA, Iram S, Mohd S, Manisha KS, Avinash BA, Shabir AR, Parvaiz HQ (2013) Isolation, purification and characterization of carboxyl cellulase (CMCase) from endophytic F. oxysporum producing podophyllotoxin. Adv Enzym Res 1:91–96. doi: 10.4236/aer.2013.14010 CrossRefGoogle Scholar
  11. Gao J, Weng H, Zhu D, Yuan M, Guan F, Xi Y (2008) Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of corn stover. Bioresour Technol 99:7623–7629. doi: 10.1016/j.biortech.2008.02.005 CrossRefGoogle Scholar
  12. Gasparotto JM, Werle LB, Foletto EL, Kuhn RC, Jahn SL, Mazutti MA (2015) Production of cellulolytic enzymes and application of crude enzymatic extract for saccharification of lignocellulosic biomass. Appl Biochem Biotechnol 175:560–572CrossRefGoogle Scholar
  13. Guo Y-P, Fan S-Q, Fan Y-T, Pan C-M, Hou H-W (2010) The preparation and application of crude cellulase for cellulose-hydrogen production by anaerobic fermentation. Int J Hydrog Energy 35:459–468. doi: 10.1016/j.ijhydene.2009.10.021 CrossRefGoogle Scholar
  14. Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS (2010) Cellulose crystallinity—a key predictor of the enzymatic hydrolysis rate. FEBS J 277:1571–1582. doi: 10.1111/j.1742-4658.2010.07585.x CrossRefGoogle Scholar
  15. Ibrahim MF, Razak MNA, Phang LY, Hassan MA, Abd-Aziz S (2013) Crude cellulase from oil palm empty fruit bunch by Trichoderma asperellum UPM1 and Aspergillus fumigatus UPM2 for fermentable sugars production. Appl Biochem Biotechnol 170:1320. doi: 10.1007/s12010-013-0275-2 CrossRefGoogle Scholar
  16. Kachlishvili E, Khardziani T, Metreveli E, Kobakhidze A, Elisashvili V (2012) Screening of basidiomycetes for the production of lignocellulosic enzymes during fermentation of food wastes. J Waste Convers Bioprod Biotechnol 1:9–15. doi: 10.5147/jpgs.2012.0078 Google Scholar
  17. Karnchanatat A, Petsom A, Sangvanich P et al (2008) A novel thermostable endoglucanase from the wood-decaying fungus Daldinia eschscholzii (Ehenb:Fr.) Rehm. Enzym Microb Technol 42:404–413CrossRefGoogle Scholar
  18. Kostylev M, Wilson DB (2012) Synergistic interactions in cellulose hydrolysis. Rev Biofuels 3:61–70. doi: 10.4155/bfs.11.150 CrossRefGoogle Scholar
  19. Lopez CG, Rogers SE, Colby RH, Graham P, Cabral JT (2015) Structure of sodium carboxymethyl cellulose aqueous solutions: A SANS and rheology study. J Polym Sci Part B Polym Phys 53:492–501. doi: 10.1002/polb.23657 CrossRefGoogle Scholar
  20. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577CrossRefGoogle Scholar
  21. McNamara JT, Morgan JLW, Zimmer J (2015) A molecular description of cellulose biosynthesis. Annu Rev Biochem 84:895–921. doi: 10.1146/annurev-biochem-060614-033930 CrossRefGoogle Scholar
  22. Merino S, Cherry J (2007) Progress and challenges in enzyme development for biomass utilization. Adv Biochem Eng Biotechnol 108:95–120. doi: 10.1007/10.2007.066 Google Scholar
  23. Miller GM (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. doi: 10.1021/ac60147a030 CrossRefGoogle Scholar
  24. Mrudula S, Murugammal R (2011) Production of cellulase by Aspergillus niger under submerged and solid state fermentation using coir waste as a substrate. Braz J Microbiol 42:1119–1127. doi: 10.1590/S1517-838220110003000033 CrossRefGoogle Scholar
  25. Mukherjee S, Moumita K, Rina R (2011) Production of extracellular exoglucanase by Rhizopus oryzae from submerged fermentation of agro-waste. Recent Res Sci Technol 3:69–75Google Scholar
  26. Olajuyigbe FM, Ogunyewo OA (2016) Enhanced production and physicochemical properties of thermostable crude cellulase from Sporothix carnis grown on corn cob. Biocatal Agric Biotechnol 7:110–117. doi: 10.1016/j.bcab.2016.05.012 Google Scholar
  27. Olajuyigbe FM, Nlekerem CM, Ogunyewo OA (2016) Production and characterization of highly thermostable B-glucosidase during the biodegradation of methylcellulose by Fusarium oxysporum. Biochem Res Int 3978124:1–8. doi: 10.1155/2016/3978124 CrossRefGoogle Scholar
  28. Papke RT, Ward DM (2004) The importance of physical isolation to microbial diversification. FEMS Microbiol Ecol 48:293–303. doi: 10.1016/j.femsec.2004.03.013 CrossRefGoogle Scholar
  29. Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Ståhlberg J, Beckham GT (2015) Fungal cellulases. Chem Rev 115:1308–1448. doi: 10.1021/cr500351c CrossRefGoogle Scholar
  30. Peciulyte A, Anasontzis GE, Karlstrom K, Larsson PT, Olsson L (2014) Morphology and enzyme production of Trichoderma reesei Rut C-30 are affected by the physical and structural characteristics of cellulosic substrates. Fungal Genet Biol 72:64–72. doi: 10.1016/j.fgb.2014.07.011 CrossRefGoogle Scholar
  31. Pirota R, Delabona P, Farinas C (2014) Enzymatic hydrolysis of sugarcane bagasse using enzyme extract and whole solid-state fermentation medium of two newly isolated strains of aspergillus oryzae. Chem Eng Trans 38:259–264. doi: 10.3303/CET1438044 Google Scholar
  32. Rahnama N, Foo HL, Abdul Rahman NA, Ariff A, Md Shah UK (2014) Saccharification of rice straw by cellulase from a local Trichoderma harzianum SNRS3 for biobutanol production. BMC Biotechnol 14:103. doi: 10.1186/s12896-014-0103-y CrossRefGoogle Scholar
  33. Ramanathan G, Bhanupriya S, Abirami D (2010) Production and optimization of cellulase from Fusarium oxysporum by submerged fermentation. J Sci Ind Res 69:454–459Google Scholar
  34. Saha BC (2004) Production, purification and properties of endoglucanase from a newly isolated strain of Mucor circinelloides. Process Biochem 39:1871–1876. doi: 10.1016/j.procbio.2003.09.013 CrossRefGoogle Scholar
  35. Salahuddin K, Ram P, Suresh GH, Manish VD, Virendra SK, Dilshad HM (2012) Biochemical characterization of thermostable cellulase enzyme from mesophilic strains of actinomycete. Afr J Biotechnol 11:10125–10134. doi: 10.5897/AJB11.3734 Google Scholar
  36. Sarao LK, Arora M, Sehgal VK (2010) Use of Scopulariopsis acremonium for the production of cellulose and xylanase though submerged fermentation. Afr J Microbiol Res 4:1506–1510Google Scholar
  37. Seki Y, Kikuchi Y, Kimura Y, Yoshimoto R, Takahashi M, Aburai K et al (2015) Enhancement of cellulose degradation by Cattle Saliva. PLoS ONE 10(9):e0138902. doi: 10.1371/journal.pone.0138902 CrossRefGoogle Scholar
  38. Shahzadi T, Anwar Z, Iqbal Z, Anjum A, Aqil T, Bakhtawar AA, Kamran M, Mehmood S, Irshad M (2014) Induced production of exoglucanase, and β-glucosidase from fungal co-culture of T. viride and G. lucidum. Adv Biosci Biotechnol 5:426–433. doi: 10.4236/abb.2014.55051 CrossRefGoogle Scholar
  39. Soni KS, Soni R (2010) Regulation of cellulase synthesis in Chaetomium erraticum. BioResources 5:81–98Google Scholar
  40. Sonia S, Saksham G (2014) Optimization of cultural parameters for cellulase enzyme production from fungi. J Biol Life Sci 2:989–996Google Scholar
  41. Sukumaran RK, Surender VJ, Sindhu R, Binod P, Janu KU, Sajna KV, Rajasree KP, Pandey A (2010) Lignocellulosic ethanol in India: prospects, challenges and feedstock availability. Bioresour Technol 101:4826–4833. doi: 10.1016/j.biortech.2009.11.049 CrossRefGoogle Scholar
  42. Sun B, Wang X, Wang F, Jiang Y, Zhang X (2013) Assessing the relative effects of geographic location and soil type on microbial communities associated with straw decomposition. Appl Environ Microbiol 79:3327–3335. doi: 10.1128/AEM.00083-13 CrossRefGoogle Scholar
  43. Szymańska-Chargot M, Cybulska J, Zdunek A (2011) Sensing the structural differences in cellulose from apple and bacterial cell wall materials by Raman and FT-IR spectroscopy. Sensors 11:5543–5560CrossRefGoogle Scholar
  44. Tarek AAM (2007) Optimization of cellulase and β-glucosidase induction by sugarbeet pathogen Sclerotium rolfsii. Afr J Biotechnol 6:1048–1054. doi: 10.5897/AJB2007.000-2135 Google Scholar
  45. Wipusaree N, Sihanonth P, Piapukiew J, Sangvanich P, Karnchanatat A (2011) Purification and characterization of a xylanase from the endophytic fungus Alternaria alternata isolated from the Thai medicinal plant, Croton oblongfolius Roxb. Afr J Microbiol Res 5:5697–5712. doi: 10.5897/AJMR11.1037 Google Scholar
  46. Wood TM, Bhat KM (1998) Method for measuring cellulase activities. In: Wood WA, Kellogg JA (eds) Methods in Enzymology: Cellulose and Hemicellulose, vol 160. Academic Press, New York, pp 87–112CrossRefGoogle Scholar
  47. Zhao L, Cao G-L, Wang A-J, Ren H-Y, Xu C-J, Ren N-Q (2013) Enzymatic saccharification of cornstalk by onsite cellulases produced by Trichoderma viride for enhanced biohydrogen production. GCB Bioenergy 5:591–598. doi: 10.1111/gcbb.12022 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Enzyme Biotechnology and Environmental Health Unit, Department of BiochemistryFederal University of TechnologyAkureNigeria

Personalised recommendations