Skip to main content
Log in

The influence of corona treatment and impregnation with colloidal TiO2 nanoparticles on biodegradability of cotton fabric

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

This study discusses the effect of corona pre-treatment at atmospheric pressure and subsequent loading of colloidal TiO2 nanoparticles on the biodegradation behavior of cotton fabric. Biodegradation performance of the control and finished samples was evaluated by standard soil burial tests in predetermined periods of 3, 9 and 18 days. Color and breaking strength measurements were utilized for assessment of biodegradation progress. Morphological and chemical changes induced by biodegradation were analysed by SEM and FT-IR analyses, respectively. Colorimetric, morphological and chemical changes induced by the biodegradation process were slightly less prominent on corona pre-treated cotton fabric impregnated with TiO2 nanoparticles compared to corona treated and control cotton fabric. Although the breaking strength of all samples significantly decreased after 18 days of soil burial, this decline was the least evident on the sample impregnated with TiO2 nanoparticles. However, taking into account the extent of these differences, the influence of TiO2 nanoparticles on biodegradation rate of cotton fabric, which underwent a combined treatment corona/impregnation with TiO2 nanoparticles, could be considered as insignificant. These results confirm that chemical modification of cotton fabrics with plasma and subsequent loading of TiO2 still maintained sustainability of cellulose fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–4139

    Article  CAS  Google Scholar 

  • Blaser SA, Scheringer M, MacLeod M, Hungerbühler K (2008) Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ 390:396–409

    Article  CAS  Google Scholar 

  • Bras A, Rozman T, Gramc K, Tomšič B, Gorjanc M, Kert M, Simončič B (2017) Influence of the nanotechnological process of chemical modification on the antimicrobial activity and biodegradability of textile fibers. Tekstilec 60:14–24

    Article  Google Scholar 

  • Chibowski E, Gonzales-Caballero F (1993) Theory and practice of thin-layer wicking. Langmuir 9:330–340

    Article  CAS  Google Scholar 

  • Chung C, Lee M, Choe E (2004) Characterization of cotton fabric scouring by FT-IR ATR spectroscopy. Carbohydr Polym 58:417–420

    Article  CAS  Google Scholar 

  • Ciolacu D, Ciolacu F, Popa VI (2011) Amorphous cellulose-structure and characterization. Cell Chem Technol 45:13–21

    CAS  Google Scholar 

  • Dalai S, Pakrashi S, Kumar RSS, Chandrasekaran N, Mukherjee A (2012) A comparative citotoxicity study of TiO2 nanoparticles under light and dark conditions at low exposure concentrations. Toxicol Res 1:116–130

    Article  CAS  Google Scholar 

  • Daoud WA, Leung SK, Tung WS, Xin JH, Cheuk K, Qi K (2008) Self-cleaning keratins. Chem Mater 20:1242–1244

    Article  CAS  Google Scholar 

  • Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517–531

    Article  CAS  Google Scholar 

  • Ge Y, Priester JH, Van De Werhorst LC, Schimel JP, Holden PA (2013) Potential mechanisms and environmental controls of TiO2 nanoparticle effects on soil bacteria communities. Environ Sci Technol 47:14411–14417

    Article  CAS  Google Scholar 

  • Geranio L, Heuberger M, Nowack B (2009) The behavior of silver nanotextiles during washing. Environ Sci Technol 43:8113–8118

    Article  CAS  Google Scholar 

  • Gorenšek M, Gorjanc M, Bukošek V, Kovač J, Jovančić P, Mihailović D (2010a) Functionalization of PET fabrics by corona and nano silver. Text Res J 80:253–262

    Article  Google Scholar 

  • Gorenšek M, Gorjanc M, Bukošek V, Kovač J, Petrović Z, Puač N (2010b) Functionalization of polyester fabric by Ar/N2 plasma and silver. Text Res J 80:1633–1642

    Article  Google Scholar 

  • Gorjanc M, Jazbec K, Šala M, Zaplotnik R, Vesel A, Mozetič M (2014) Creating cellulose fibres with excellent UV protective properties using moist CF4 plasma and ZnO nanoparticles. Cellulose 21:3007–3021

    Article  CAS  Google Scholar 

  • Gottschalk F, Nowack B (2011) The release of engineered nanomaterials to the environment. J Environ Monit 13:1145–1155

    Article  CAS  Google Scholar 

  • Hulleman SHD, van Hazendonk JM, van Dam JEG (1994) Determination of crystallinity in native cellulose from higher plants with diffuse reflectance Fourier transform infrared spectroscopy. Carbohydr Res 261:163–172

    Article  CAS  Google Scholar 

  • Ibrahim HMM, Hassan MS (2016) Characterization and antimicrobial properties of cotton fabric loaded with green synthesized silver nanoparticles. Carbohydr Polym 151:841–850

    Article  CAS  Google Scholar 

  • Ilić V, Šaponjić Z, Vodnik V, Molina R, Dimitrijević S, Jovančić P, Nedeljković J, Radetić M (2009) Antifungal efficiency of corona pretreated polyester and polyamide fabrics loaded with Ag nanoparticles. J Mater Sci 44:3983–3990

    Article  Google Scholar 

  • Ilić V, Šaponjić Z, Vodnik V, Lazović S, Dimitrijević S, Jovančić P, Nedeljković JM, Radetić M (2010) Bactericidal efficiency of silver nanoparticles deposited onto radio frequency plasma pretreated polyester fabrics. Ind Eng Chem Res 49:7287–7293

    Article  Google Scholar 

  • Johansson K (2007) Plasma modification of natural cellulosic fibres. In: Shishoo R (ed) Plasma technologies for textiles. Woodhead publishing in textiles, Cambridge, pp 251–260

    Google Scholar 

  • Kale KH, Desai AN (2012) Atmospheric plasma treatment of textiles using non-polymerising gases. Indian J Fibre Text 36:289–299

    Google Scholar 

  • Khalil-Abad MS, Yazdanshenas ME, Nateghi MR (2009) Effect of cationization on adsorption of silver nanoparticles on cotton surfaces and its antibacterial activity. Cellulose 16:1147–1157

    Article  Google Scholar 

  • Klemenčič D, Simončič B, Tomšič B, Orel B (2010) Biodegradation of silver functionalized cellulose fibres. Carbohydr Polym 80:426–435

    Article  Google Scholar 

  • Lazić V, Radoičić M, Šaponjić Z, Radetić T, Vodnik V, Nikolić S, Dimitrijević S, Radetić M (2015) Negative influence of Ag and TiO2 nanoparticles on biodegradation of cotton fabrics. Cellulose 22:1365–1378

    Article  Google Scholar 

  • Meilert KT, Laub D, Kiwi J (2005) Photocatalytic self-cleaning of modified cotton textiles by TiO2 cluster attached by chemical spacers. J Mol Catal A 237:101–108

    Article  CAS  Google Scholar 

  • Mejía MI, Marín JM, Restrepo G, Pulgarín C, Mielczarski E, Mielczarski J, Arroyo Y, Lavanchy JC, Kiwi J (2009) Self-cleaning modified TiO2 cotton pre-treated by UVC-light (185 nm) and RF-plasma in vacuum and also under atmospheric pressure. Appl Catal B 91:481–488

    Article  Google Scholar 

  • Mihailović D, Šaponjić Z, Radoičić M, Radetić T, Jovančić P, Nedeljković J, Radetić M (2010a) Functionalization of polyester fabrics with alginates and TiO2 nanoparticles. Carbohydr Polym 79:526–532

    Article  Google Scholar 

  • Mihailović D, Šaponjić Z, Molina R, Puač N, Jovančić P, Nedeljković J, Radetić M (2010b) Improved properties of oxygen and argon RF plasma activated polyester fabrics loaded with TiO2 nanoparticles. ACS Appl Mater Inter 2:1700–1706

    Article  Google Scholar 

  • Mihailović D, Šaponjić Z, Molina R, Radoičić M, Esquena J, Jovančić P, Nedeljković J, Radetić M (2011a) Multifunctional properties of polyester fabrics modified by corona discharge/air RF plasma and colloidal TiO2 nanoparticles. Polym Composite 32:390–397

    Article  Google Scholar 

  • Mihailović D, Šaponjić Z, Radoičić M, Lazović S, Baily CJ, Jovančić P, Nedeljković J, Radetić M (2011b) Functionalization of cotton fabrics with corona/air RF plasma and colloidal TiO2 nanoparticles. Cellulose 18:811–825

    Article  Google Scholar 

  • Milošević M, Krkobabić A, Radoičić M, Šaponjić Z, Radetić T, Radetić M (2017) Biodegradation of cotton and cotton/polyester fabrics impregnated with Ag/TiO2 nanoparticles in soil. Carbohydr Polym 158:77–84

    Article  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386

    Article  CAS  Google Scholar 

  • Nelson ML, O’Connor RT (1964) Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in celluloses I and II. J Appl Polym Sci 8:1325–1341

    Article  CAS  Google Scholar 

  • O’Connor RT, DuPre EF, Mitcham D (1958) Applications of infrared absorption spectroscopy to investigations of cotton and modified cottons. Part I: physical and crystalline modifications and oxidation. Text Res J 28:382–392

    Article  Google Scholar 

  • Oh SY, Yoo DI, Shin Y, Seo G (2005) FT-IR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr Res 340:417–428

    Article  CAS  Google Scholar 

  • Pakdel E, Daoud WA, Wang X (2015) Assimilating the photo-induced functions of TiO2-based compounds in textiles: emphasis on the sol–gel process. Text Res J 85:1404–1428

    Article  CAS  Google Scholar 

  • Park CH, Kang YK, Im SS (2004) Biodegradability of cellulose fabrics. J Appl Polym Sci 94:248–253

    Article  CAS  Google Scholar 

  • Priester JH, Ge Y, Chang V, Stoimenov PK, Schimel JP, Stucky GD, Holden PA (2013) Assessing interactions of hydrophilic nanoscale TiO2 with soil water. J Nanopart Res 15:1899–1912

    Article  Google Scholar 

  • Primc G, Tomšič B, Vesel A, Mozetič M, Ercegović Ražić S, Gorjanc M (2016) Biodegradability of oxygen-plasma treated cellulose textile functionalized with ZnO nanoparticles as antibacterial treatment. J Phys D Appl Phys 49:324002

    Article  Google Scholar 

  • Proniewicz LM, Paluszkiewicz C, Wesełucha-Birczyńska A, Majcherczyk H, Barański A, Konieczna A (2001) FT-IR and FT-Raman study of hydrothermally degraded cellulose. J Mol Struct 596:163–169

    Article  CAS  Google Scholar 

  • Prysiazhnyi V, Kramar A, Dojcinovic B, Zekic A, Obradovic BM, Kuraica MM, Kostic M (2013) Silver incorporation on viscose and cotton fibers after air, nitrogen and oxygen DBD plasma pretreatment. Cellulose 20:315–325

    Article  CAS  Google Scholar 

  • Puac N, Petrovic ZLJ, Radetic M, Djordjevic A (2005) Low pressure RF capacitively coupled plasma reactor for modification of seeds. Mater Sci Forum 494:291–296

    Article  CAS  Google Scholar 

  • Qi K, Xin JH, Daoud WA, Mak CL (2007) Functionalizing polyester fiber with a self-cleaning property using anatase TiO2 and low-temperature plasma treatment. Int J Appl Ceram Tec 4:554–563

    Article  CAS  Google Scholar 

  • Radetić M (2013a) Functionalization of textile materials with silver nanoparticles. J Mater Sci 48:95–107

    Article  Google Scholar 

  • Radetić M (2013b) Functionalization of textile materials with TiO2 nanoparticles. J Photochem Photobiol C 16:62–76

    Article  Google Scholar 

  • Radetić M (2016) Textiles. In: Shohet JL (ed) Encyclopedia of Plasma Technology. CRC Press, Taylor and Francis Group, Boca Raton, pp 1396–1407

    Chapter  Google Scholar 

  • Rajh T, Nedeljković J, Chen LX, Tiede DM, Thurnauer MC (1998) Photoreduction of copper on TiO2 nanoparticles modified with polydentate ligands. J Advan Oxid Technol 3:292–298

    CAS  Google Scholar 

  • Riccardi C, Barni R, Fontanesi M, Marcandalli B, Massafra M, Selli E, Mazzone G (2001) SF6 RF plasma reactor for research on textile treatment. Plasma Sour Sci Technol 10:92–98

    Article  CAS  Google Scholar 

  • Rivero PJ, Urrutia A, Goicoechea J, Arregui FJ (2015) Nanomaterials for functional textiles and fibers. Nanoscale Res Lett 10:501–522

    Article  Google Scholar 

  • Schaumann GE, Philippe A, Bundschuh M, Metreveli G, Klitzke S, Rakcheev D, Grün A, Kumahor SK, Kühn M, Baumann T, Lang F, Manz W, Schulz R, Vogel HJ (2015) Understanding the fate and biological effects of Ag- and TiO2-nanoparticles in the environment: the quest for advanced analytics and interdisciplinary concepts. Sci Total Environ 535:3–19

    Article  CAS  Google Scholar 

  • Shahidi S, Rashidi A, Ghoranneviss M, Anvari A, Rahimi MK, Bameni Moghaddam M, Wiener J (2010) Investigation of metal absorption and antibacterial activity on cotton fabric modified by low temperature plasma. Cellulose 17:627–634

    Article  CAS  Google Scholar 

  • Simončič B, Klemenčič D (2016) Preparation and performance of silver as an antimicrobial agent for textiles: a review. Text Res J 86:210–223

    Article  Google Scholar 

  • Sun D, Stylios G (2004) Effect of low temperature plasma treatment on the scouring and dyeing of natural fabrics. Text Res J 74:751–756

    Article  CAS  Google Scholar 

  • Szostak-Kotowa J (2004) Biodeteriration of textiles. Int Biodeter Biodegr 53:165–170

    Article  CAS  Google Scholar 

  • Tomšič B, Simončič B, Orel B, Vilčnik A, Spreiyer H (2007a) Biodegradability of cellulose fabric modified with imidazolidinone. Carbohydr Polym 69:478–488

    Article  Google Scholar 

  • Tomšič B, Simončič B, Vince J, Orel B, Vilčnik A, Fir M, Šurca Vuk A, Jovanovski V (2007b) The use of ATR IR spectroscopy in the study of structural changes of the cellulose fibers. Tekstilec 50:3–15

    Google Scholar 

  • Tomšič B, Klemenčić D, Simončič B, Orel B (2011) Influence of antimicrobial finishes on the biodeterioration of cotton and cotton/polyester fabrics: leaching versus bio-barrier formation. Polym Degrad Stabil 96:1286–1296

    Article  Google Scholar 

  • Uğur Ş, Sarıışık M, Aktaş AH (2011) Nano-TiO2 based multilayer film deposition on cotton fabrics for UV-protection. Fiber Polym 12:190–196

    Article  Google Scholar 

  • Wang J, Zhao J, Sun L, Wang X (2015) A review on the application of photocatalytic materials on textiles. Text Res J 85:1104–1118

    Article  CAS  Google Scholar 

  • Windler L, Lorenz C, von Goetz N, Hungerbuhler K, Amberg M, Heuberger M, Nowack B (2012) Release of titanium dioxide from textile during washing. Environ Sci Technol 46:8181–8188

    Article  CAS  Google Scholar 

  • Yuranova T, Rincon AG, Bozzi A, Parra S, Pulgarin C, Albers P, Kiwi J (2003) Antibacterial textiles prepared by RF-plasma and vacuum-UV mediated deposition of silver. J Photochem Photobiol A 161:27–34

    Article  CAS  Google Scholar 

  • Yuranova T, Laub D, Kiwi J (2007) Synthesis, activity and characterization of textiles showing self-cleaning activity under daylight irradiation. Catal Today 122:109–117

    Article  CAS  Google Scholar 

  • Zhukova LV, Kiwi J, Nikandrov VV (2012) TiO2 nanoparticles suppress Escherichia coli cell division in the absence of UV irradiation in acidic conditions. Colloid Surf B 97:240–247

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support for this study was provided by the Slovenian Research Agency (Programme P2-0213 Textiles and Ecology) and the Ministry of Education, Science and Technological Development of Republic of Serbia (project no. 172056). This research has been done under the umbrella of the bilateral cooperation between Republic of Slovenia and Republic of Serbia (project “Biodegradability of textile materials impregnated with silver and titania nanoparticles”, 451-03-38/2016-09/41).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maja Radetić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomšič, B., Vasiljević, J., Simončič, B. et al. The influence of corona treatment and impregnation with colloidal TiO2 nanoparticles on biodegradability of cotton fabric. Cellulose 24, 4533–4545 (2017). https://doi.org/10.1007/s10570-017-1415-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1415-6

Keywords

Navigation