Advertisement

Cellulose

, Volume 24, Issue 10, pp 4263–4274 | Cite as

Enhancement in physicochemical properties of citric acid/nano SiO2 treated sustainable wood-starch nanocomposites

  • Prasanta Baishya
  • Tarun K. MajiEmail author
Original Paper

Abstract

Citric acid was used as the cross-linker to prepare the sustainable wood starch nanocomposites (WSNC) from the renewable resources like starch and soft wood flour using water as the solvent. Nano SiO2 was employed to develop the physicochemical properties of the WSNC via a green path. In this process, starch was grafted with methylmethacrylate (MMA) and SiO2 was modified with N-cetyl-N,N,N-trimethyl ammonium bromide. Three different percentage of modified nano SiO2 (1–5 phr) were employed in the preparation of the composites and their properties were characterized by Fourier transform infrared spectroscopy. The morphological features of the composites were investigated through transmission electron microscopy and scanning electron microscopy study. Mechanical and dynamic mechanical properties like storage modulus, loss factors and tan δ value of the composites were thoroughly investigated. Thermal stability, water resistance and flammability of the composites were significantly improved after incorporation of modified SiO2. The maximum improvements in properties were achieved containing 3 phr modified SiO2 composites.

Keywords

Starch Citric acid SiO2 Wood starch nanocomposites Mechanical properties Dynamic mechanical properties 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abbott AP, Palazuela Conde J, Davis SJ, Wise WR (2012) Starch as a replacement for urea-formaldehyde in medium density fibreboard. Green Chem 14(11):3067CrossRefGoogle Scholar
  2. Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87(2):963CrossRefGoogle Scholar
  3. AlMaadeed MA, Nógellová Z, Janigová I, Krupa I (2014) Improved mechanical properties of recycled linear low-density polyethylene composites filled with date palm wood powder. Mater Des 58:209CrossRefGoogle Scholar
  4. Ashori A (2008) Wood–plastic composites as promising green-composites for automotive industries! Bioresour Technol 99(11):4661CrossRefGoogle Scholar
  5. Baishya P, Maji TK (2014) Studies on effects of different cross-linkers on the properties of starch-based wood composites. ACS Sustain Chem Eng 2(7):1760CrossRefGoogle Scholar
  6. Baishya P, Maji TK (2016) Functionalization of MWCNT and their application in properties development of green wood nanocomposite. Carbohydr Polym 149:332CrossRefGoogle Scholar
  7. Chang PR, Jian R, Zheng P, Yu J, Ma X (2010) Preparation and properties of glycerol plasticized-starch (GPS)/cellulose nanoparticle (CN) composites. Carbohydr Polym 79(2):301CrossRefGoogle Scholar
  8. Chrissafis K, Paraskevopoulos KM, Pavlidou E, Bikiaris D (2009) Thermal degradation mechanism of HDPE nanocomposites containing fumed silica nanoparticles. Thermochim Acta 485(1–2):65CrossRefGoogle Scholar
  9. Deka BK, Maji TK (2010) Effect of coupling agent and nanoclay on properties of HDPE, LDPE, PP, PVC blend and Phargamites karka nanocomposite. Compos Sci Technol 70(12):1755CrossRefGoogle Scholar
  10. Deka BK, Maji TK (2011) Effect of TiO2 and nanoclay on the properties of wood polymer nanocomposite. Compos A Appl Sci Manuf 42(12):2117CrossRefGoogle Scholar
  11. Deka BK, Maji TK (2012) Effect of silica nanopowder on the properties of wood flour/polymer composite. Polym Eng Sci 52(7):1516CrossRefGoogle Scholar
  12. Deka BK, Maji TK (2013) Effect of SiO2 and nanoclay on the properties of wood polymer nanocomposite. Polym Bull 70(2):403CrossRefGoogle Scholar
  13. Deka BK, Maji TK, Mandal M (2011) Study on properties of nanocomposites based on HDPE, LDPE, PP, PVC, wood and clay. Polym Bull 67(9):1875CrossRefGoogle Scholar
  14. Deka BK, Mandal M, Maji TK (2012) Effect of nanoparticles on flammability, UV resistance, biodegradability, and chemical resistance of wood polymer nanocomposite. Ind Eng Chem Res 51(37):11881CrossRefGoogle Scholar
  15. Deka BK, Baishya P, Maji TK (2014) Synergistic effect of SiO2, ZnO and nanoclay on mechanical and thermal properties of wood polymer nanocomposite. J Thermoplast Compos Mater 27(4):464CrossRefGoogle Scholar
  16. Demitri C, Del Sole R, Scalera F et al (2008) Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid. J Appl Polym Sci 110(4):2453CrossRefGoogle Scholar
  17. Duanmu J, Gamstedt EK, Rosling A (2007) Hygromechanical properties of composites of crosslinked allylglycidyl-ether modified starch reinforced by wood fibres. Compos Sci Technol 67(15–16):3090CrossRefGoogle Scholar
  18. Duanmu J, Kristofer Gamstedt E, Pranovich A, Rosling A (2010) Studies on mechanical properties of wood fiber reinforced cross-linked starch composites made from enzymatically degraded allylglycidyl ether-modified starch. Compos A Appl Sci Manuf 41(10):1409CrossRefGoogle Scholar
  19. Erdem N, Cireli AA, Erdogan UH (2009) Flame retardancy behaviors and structural properties of polypropylene/nano-SiO2 composite textile filaments. J Appl Polym Sci 111(4):2085CrossRefGoogle Scholar
  20. Fernandes EG, Pietrini M, Chiellini E (2004) Bio-based polymeric composites comprising wood flour as filler. Biomacromolecules 5(4):1200CrossRefGoogle Scholar
  21. Ge XC, Xu Y, Meng YZ, Li RKY (2005) Thermal and mechanical properties of biodegradable composites of poly(propylene carbonate) and starch–poly(methyl acrylate) graft copolymer. Compos Sci Technol 65(14):2219CrossRefGoogle Scholar
  22. Gungor A (2007) Mechanical properties of iron powder filled high density polyethylene composites. Mater Des 28(3):1027CrossRefGoogle Scholar
  23. Hazarika A, Maji TK (2013a) Effect of different crosslinkers on properties of melamine formaldehyde-furfuryl alcohol copolymer/montmorillonite impregnated softwood (Ficus hispida). Polym Eng Sci 53(7):1394CrossRefGoogle Scholar
  24. Hazarika A, Maji TK (2013b) Synergistic effect of nano-TiO2 and nanoclay on the ultraviolet degradation and physical properties of wood polymer nanocomposites. Ind Eng Chem Res 52(38):13536CrossRefGoogle Scholar
  25. Hazarika A, Maji TK (2014) Strain sensing behavior and dynamic mechanical properties of carbon nanotubes/nanoclay reinforced wood polymer nanocomposite. Chem Eng J 247:33CrossRefGoogle Scholar
  26. Hu Y-H, Chen C-Y, Wang C-C (2004) Viscoelastic properties and thermal degradation kinetics of silica/PMMA nanocomposites. Polym Degrad Stab 84(3):545CrossRefGoogle Scholar
  27. Islam MS, Hamdan S, Talib ZA, Ahmed AS, Rahman MR (2012) Tropical wood polymer nanocomposite (WPNC): the impact of nanoclay on dynamic mechanical thermal properties. Compos Sci Technol 72(16):1995CrossRefGoogle Scholar
  28. Kaewtatip K, Tanrattanakul V (2008) Preparation of cassava starch grafted with polystyrene by suspension polymerization. Carbohydr Polym 73(4):647CrossRefGoogle Scholar
  29. Kaewtatip K, Tanrattanakul V (2012) Structure and properties of pregelatinized cassava starch/kaolin composites. Mater Des 37:423CrossRefGoogle Scholar
  30. Kang J-S, Yu C, Zhang F-A (2009) Effect of silane modified SiO2 particles on poly (MMA-HEMA) soap-free emulsion polymerization. Iran Polym J 18(22):927Google Scholar
  31. Kotharangannagari VK, Krishnan K (2016) Biodegradable hybrid nanocomposites of starch/lysine and ZnO nanoparticles with shape memory properties. Mater Des 109:590CrossRefGoogle Scholar
  32. Li Y-F, Liu Y-X, Wang X-M, Wu Q-L, Yu H-P, Li J (2011) Wood–polymer composites prepared by the in situ polymerization of monomers within wood. J Appl Polym Sci 119(6):3207CrossRefGoogle Scholar
  33. Li M-C, Lee JK, Cho UR (2012) Synthesis, characterization, and enzymatic degradation of starch-grafted poly(methyl methacrylate) copolymer films. J Appl Polym Sci 125(1):405CrossRefGoogle Scholar
  34. Liaw W-C, Cheng Y-L, Liao Y-S, Chen C-S, Lai S-M (2011) Complementary functionality of SiO2 and TiO2 in polyimide/silica-titania ternary hybrid nanocomposites. Polym J 43(3):249CrossRefGoogle Scholar
  35. Liu H, Xie F, Yu L, Chen L, Li L (2009) Thermal processing of starch-based polymers. Prog Polym Sci 34(12):1348CrossRefGoogle Scholar
  36. Liu R, Chen Y, Cao J (2016a) Effects of modifier type on properties of in situ organo-montmorillonite modified wood flour/poly(lactic acid) composites. ACS Appl Mater Interfaces 8(1):161CrossRefGoogle Scholar
  37. Liu L, Qian M, Pa Song, Huang G, Yu Y, Fu S (2016b) Fabrication of green lignin-based flame retardants for enhancing the thermal and fire retardancy properties of polypropylene/wood composites. ACS Sustain Chem Eng 4(4):2422CrossRefGoogle Scholar
  38. Madaleno L, Schjødt-Thomsen J, Pinto JC (2010) Morphology, thermal and mechanical properties of PVC/MMT nanocomposites prepared by solution blending and solution blending + melt compounding. Compos Sci Technol 70(5):804CrossRefGoogle Scholar
  39. Oksman K, Skrifvars M, Selin JF (2003) Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos Sci Technol 63(9):1317CrossRefGoogle Scholar
  40. Ou R, Xie Y, Wolcott MP, Sui S, Wang Q (2014) Morphology, mechanical properties, and dimensional stability of wood particle/high density polyethylene composites: effect of removal of wood cell wall composition. Mater Des 58:339CrossRefGoogle Scholar
  41. Pan M, Mei C, Du J, Li G (2014) Synergistic effect of nano silicon dioxide and ammonium polyphosphate on flame retardancy of wood fiber–polyethylene composites. Compos A Appl Sci Manuf 66:128CrossRefGoogle Scholar
  42. Pickering KL, Efendy MGA, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Compos A Appl Sci Manuf 83:98CrossRefGoogle Scholar
  43. Reddy N, Yang Y (2010) Citric acid cross-linking of starch films. Food Chem 118(3):702CrossRefGoogle Scholar
  44. Sahar Z, Seyed Mojtaba Z, Mohammad Jafar H (2016) On the role of both polypropylene fibers and silica nanoparticles on the viscoelastic behavior of silicone rubber nanocomposites. Polym Plast Technol Eng 55(16):1693CrossRefGoogle Scholar
  45. Saheb DN, Jog JP (1999) Natural fiber polymer composites: a review. Adv Polym Technol 18(4):351CrossRefGoogle Scholar
  46. Sun L, Yang J-T, Lin G-Y, Zhong M-Q (2007) Crystallization and thermal properties of polyamide 6 composites filled with different nanofillers. Mater Lett 61(18):3963CrossRefGoogle Scholar
  47. Teuber L, Militz H, Krause A (2016) Dynamic particle analysis for the evaluation of particle degradation during compounding of wood plastic composites. Compos A Appl Sci Manuf 84:464CrossRefGoogle Scholar
  48. Titirici M-M, White RJ, Brun N et al (2015) Sustainable carbon materials. Chem Soc Rev 44(1):250CrossRefGoogle Scholar
  49. Vladimirov V, Betchev C, Vassiliou A, Papageorgiou G, Bikiaris D (2006) Dynamic mechanical and morphological studies of isotactic polypropylene/fumed silica nanocomposites with enhanced gas barrier properties. Compos Sci Technol 66(15):2935CrossRefGoogle Scholar
  50. Wang N, Zhang X, Han N, Bai S (2009) Effect of citric acid and processing on the performance of thermoplastic starch/montmorillonite nanocomposites. Carbohydr Polym 76(1):68CrossRefGoogle Scholar
  51. Xie Y, Xiao Z, Grüneberg T et al (2010) Effects of chemical modification of wood particles with glutaraldehyde and 1,3-dimethylol-4,5-dihydroxyethyleneurea on properties of the resulting polypropylene composites. Compos Sci Technol 70(13):2003CrossRefGoogle Scholar
  52. Youming D, Xiaoyan S, Shifeng Z, Jianzhang L (2015) Dynamic mechanical properties and thermal stability of furfuryl alcohol and nano-SiO2 treated poplar wood. IOP Conf Ser Mater Sci Eng 87(1):012027Google Scholar
  53. Zhang X, Dean K, Burgar IM (2010) A high-resolution solid-state NMR study on starch-clay nanocomposites and the effect of aging on clay dispersion. Polym J 42(8):689CrossRefGoogle Scholar
  54. Zhou Y, Yu J, Wang X, Wang Y, Zhu J, Hu Z (2015) Preparation of KH570-SiO2 and their modification on the MF/PVA composite membrane. Fibers Polym 16(8):1772CrossRefGoogle Scholar
  55. Zini E, Scandola M (2011) Green composites: an overview. Polym Compos 32(12):1905CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Chemical SciencesTezpur UniversityTezpurIndia

Personalised recommendations