Abdul Khalil HP, Davoudpour Y, Islam MN, Mustapha A, Sudesh K, Dungani R, Jawaid M (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665. doi:10.1016/j.carbpol.2013.08.069
CAS
Article
Google Scholar
Abraham E, Deepa B, Pothan LA, Jacob M, Thomas S, Cvelbar U, Anandjiwala R (2011) Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohydr Polym 86:1468–1475. doi:10.1016/j.carbpol.2011.06.034
CAS
Article
Google Scholar
Amiralian N, Annamalai PK, Memmott P, Martin DJ (2015a) Isolation of cellulose nanofibrils from Triodia pungens via different mechanical methods. Cellulose 22:2483–2498. doi:10.1007/s10570-015-0688-x
Article
Google Scholar
Amiralian N, Annamalai PK, Memmott P, Taran E, Schmidt S, Martin DJ (2015b) Easily deconstructed, high aspect ratio cellulose nanofibres from Triodia pungens; an abundant grass of Australia’s arid zone. RSC Adv 5:32124–32132. doi:10.1039/C5RA02936H
CAS
Article
Google Scholar
Beck-Candanedo S, Roman M, Gray DG (2005a) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromol 6:1048–1054. doi:10.1021/bm049300p
CAS
Article
Google Scholar
Beck-Candanedo S, Roman M, Gray DG (2005b) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromol 6:1048–1054. doi:10.1021/bm049300p
CAS
Article
Google Scholar
Brinchia L, Cotanaa F, Fortunatib E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169
Article
Google Scholar
Camarero Espinosa S, Kuhnt T, Foster EJ, Weder C (2013) Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromol 14:1223–1230. doi:10.1021/bm400219u
CAS
Article
Google Scholar
Cao X, Dong H, Li CM (2007) New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Biomacromol 8:899–904. doi:10.1021/bm0610368
CAS
Article
Google Scholar
Cheng QZ, Wang SQ (2008) A method for testing the elastic modulus of single cellulose fibrils via atomic force microscopy. Compos Part A Appl Sci 39:1838–1843. doi:10.1016/j.compositesa.2008.09.007
Article
Google Scholar
Collard FX, Blin J (2014) A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew Sust Energ Rev 38:594–608. doi:10.1016/j.rser.2014.06.013
CAS
Article
Google Scholar
Crisp MD, Mant J, Toon A, Cook LG (2015) Australian spinifex grasses: new names in Triodia for Monodia and Symplectrodia. Phytotaxa 230:293–296
Article
Google Scholar
Cser F (2001) About the Lorentz correction used in the interpretation of small angle X-ray scattering data of semicrystalline polymers. J Appl Polym Sci 80:2300–2308. doi:10.1002/app.1335
CAS
Article
Google Scholar
Dias AS, Lima S, Pillinger M, Valente AA (2007) Modified versions of sulfated zirconia as catalysts for the conversion of xylose to furfural. Catal Lett 114:151–160. doi:10.1007/s10562-007-9052-6
CAS
Article
Google Scholar
Dussan K, Girisuta B, Lopes M, Leahy JJ, Hayes MH (2015) Conversion of hemicellulose sugars catalyzed by formic acid: kinetics of the dehydration of D-xylose, L-arabinose, and D-glucose. Chem Sus Chem 8:1411–1428. doi:10.1002/cssc.201403328
CAS
Article
Google Scholar
Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7:303–315. doi:10.1039/C0SM00142B
CAS
Article
Google Scholar
Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromol 9:57–65. doi:10.1021/bm700769p
CAS
Article
Google Scholar
Favier V, Chanzy H, Cavaille JY (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367. doi:10.1021/ma00122a053
CAS
Article
Google Scholar
Fleming K, Gray DG, Matthews S (2001) Cellulose crystallites. Chemistry 7:1831–1835. doi:10.1002/1521-3765(20010504)7:9<1831:AID-CHEM1831>3.0.CO;2-S
CAS
Article
Google Scholar
French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896
CAS
Article
Google Scholar
French AD, Santiago Cintron MS (2013) Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index. Cellulose 20:583–588
CAS
Article
Google Scholar
Garcia de Rodriguez NL, Thielemans W, Dufresne A (2006) Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13:261–270. doi:10.1007/s10570-005-9039-7
CAS
Article
Google Scholar
Garvey CJ, Parker IH, Simon GP (2005) On the interpretation of X-ray diffraction powder patterns in terms of the nanostructure of cellulose I fibres. Macromol Chem Physic 206:1568–1575. doi:10.1002/macp.200500008
CAS
Article
Google Scholar
Gonzalez G, Lopez-Santin J, Caminal G, Sola C (1986) Dilute acid hydrolysis of wheat straw hemicellulose at moderate temperature: a simplified kinetic model. Biotechnol Bioeng 28:288–293. doi:10.1002/bit.260280219
CAS
Article
Google Scholar
Gu J, Catchmark JM (2012) Impact of hemicelluloses and pectin on sphere-like bacterial cellulose assembly. Carbohydr Polym 88:547–557. doi:10.1016/j.carbpol.2011.12.040
CAS
Article
Google Scholar
Guhados G, Wan W, Hutter JL (2005) Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21:6642–6646. doi:10.1021/la0504311
CAS
Article
Google Scholar
Habibi Y, Hoeger I, Kelley SS, Rojas OJ (2010a) Development of Langmuir–Schaeffer cellulose nanocrystal monolayers and their interfacial behaviors. Langmuir 26:990–1001. doi:10.1021/la902444x
CAS
Article
Google Scholar
Habibi Y, Lucia LA, Rojas OJ (2010b) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500. doi:10.1021/cr900339w
CAS
Article
Google Scholar
Hayashi N, Kondo T, Ishihara M (2005) Enzymatically produced nano-ordered short elements containing cellulose Iβ crystalline domains. Carbohydr Polym 61:191–197. doi:10.1016/j.carbpol.2005.04.018
CAS
Article
Google Scholar
He X et al (2014) Uniaxially aligned electrospun all-cellulose nanocomposite nanofibers reinforced with cellulose nanocrystals: scaffold for tissue engineering. Biomacromol 15:618–627. doi:10.1021/bm401656a
CAS
Article
Google Scholar
Henrique MA et al (2015) Kinetic study of the thermal decomposition of cellulose nanocrystals with different polymorphs, cellulose I and II, extracted from different sources and using different types of acids. Ind Crop Prod 76:128–140. doi:10.1016/j.indcrop.2015.06.048
CAS
Article
Google Scholar
Ilavsky J (2012) Nika: software for two-dimensional data reduction. J Appl Crystallogr 45:324–328. doi:10.1107/S0021889812004037
CAS
Article
Google Scholar
Ingegerd K, Atalla RH, Thompson NS (1995) Influence of hemicelluloses on the aggregation patterns of bacterial cellulose. Cellulose 2:129–144
Article
Google Scholar
Ioelovich M (2008) Cellulose as a nanostructured polymer: a short review. BioResources 3:1403–1418
Google Scholar
Ioelovich M (2014) Peculiarities of cellulose nanoparticles. Tappi J 13:45–51
CAS
Google Scholar
Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromol 10:2571–2576. doi:10.1021/bm900520n
CAS
Article
Google Scholar
Jakob HF, Tschegg SE, Fratzl P (1996) Hydration dependence of the wood-cell wall structure in Picea abies. A small-angle X-ray scattering study. Macromolecules 29:8435–8440. doi:10.1021/ma9605661
CAS
Article
Google Scholar
Jaswon MA, Gillis PP, Mark RE (1968) The elastic constants of crystalline native cellulose. Proc R Soc Lond Ser A Math Phys Sci 306:389–412. doi:10.2307/2416113
CAS
Article
Google Scholar
Jorfi M, Roberts MN, Foster EJ, Weder C (2013a) Physiologically responsive, mechanically adaptive bio-nanocomposites for biomedical applications. ACS Appl Mater Interfaces 5:1517–1526. doi:10.1021/am303160j
CAS
Article
Google Scholar
Jorfi M, Roberts MN, Foster EJ, Weder C (2013b) Physiologically responsive, mechanically adaptive bio-nanocomposites for biomedical applications. Acs Appl Mater Inter 5:1517–1526. doi:10.1021/am303160j
CAS
Article
Google Scholar
Kaushik M, Moores A (2016) Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem 18:622–637. doi:10.1039/c5gc02500a
CAS
Article
Google Scholar
Khandelwal M, Windle AH (2013) Self-assembly of bacterial and tunicate cellulose nanowhiskers. Polymer 54:5199–5206. doi:10.1016/j.polymer.2013.07.033
CAS
Article
Google Scholar
Krishnamachari P, Hashaikeh R, Chiesa M, El Rab KRMG (2012) Effects of acid hydrolysis time on cellulose nanocrystals properties: nanoindentation and thermogravimetric studies. Cell Chem Technol 46:13–18
CAS
Google Scholar
Kumagai S, Matsuno R, Grause G, Kameda T, Yoshioka T (2015) Enhancement of bio-oil production via pyrolysis of wood biomass by pretreatment with H2SO4. Bioresour Technol 178:76–82. doi:10.1016/j.biortech.2014.09.146
CAS
Article
Google Scholar
Lahiji RR, Xu X, Reifenberger R, Raman A, Rudie A, Moon RJ (2010) Atomic force microscopy characterization of cellulose nanocrystals. Langmuir 26:4480–4488. doi:10.1021/La903111j
CAS
Article
Google Scholar
Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose–its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764. doi:10.1016/j.carbpol.2012.05.026
CAS
Article
Google Scholar
Li RJ, Fei JM, Cai YR, Li YF, Feng JQ, Yao JM (2009) Cellulose whiskers extracted from mulberry: a novel biomass production. Carbohydr Polym 76:94–99. doi:10.1016/j.carbpol.2008.09.034
CAS
Article
Google Scholar
Lin N, Huang J, Dufresne A (2012) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 4:3274–3294. doi:10.1039/c2nr30260h
CAS
Article
Google Scholar
Lu P, Hsieh YL (2010) Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydr Polym 82:329–336. doi:10.1016/j.carbpol.2010.04.073
Article
Google Scholar
Lu P, Hsieh YL (2012) Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydr Polym 87:564–573. doi:10.1016/j.carbpol.2011.08.022
CAS
Article
Google Scholar
Lu QL, Tang LR, Lin FC, Wang SQ, Chen YD, Chen XR, Huang B (2014) Preparation and characterization of cellulose nanocrystals via ultrasonication-assisted FeCl3-catalyzed hydrolysis. Cellulose 21:3497–3506. doi:10.1007/s10570-014-0376-2
CAS
Article
Google Scholar
Mendez J, Annamalai PK, Eichhorn SJ, Rusli R, Rowan SJ, Foster EJ, Weder C (2011) Bioinspired mechanically adaptive polymer nanocomposites with water-activated shape-memory effect. Macromolecules 44:6827–6835. doi:10.1021/ma201502k
CAS
Article
Google Scholar
Mohammadinejad R, Karimi S, Iravani S, Varma RS (2016) Plant-derived nanostructures: types and applications. Green Chem 18:20–52. doi:10.1039/c5gc01403d
Article
Google Scholar
Mohd Amin KN, Annamalai PK, Morrow IC, Martin D (2015) Production of cellulose nanocrystals via a scalable mechanical method. RSC Adv 5:57133–57140. doi:10.1039/c5ra06862b
CAS
Article
Google Scholar
Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011a) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. doi:10.1039/C0cs00108b
CAS
Article
Google Scholar
Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011b) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. doi:10.1039/c0cs00108b
CAS
Article
Google Scholar
Moran JI, Alvarez VA, Cyras VP, Vazquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159
CAS
Article
Google Scholar
Oksman K et al (2016) Review of the recent developments in cellulose nanocomposite processing. Compos Part A Appl Sci 83:2–18. doi:10.1016/j.compositesa.2015.10.041
CAS
Article
Google Scholar
Paakko M et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromol 8:1934–1941. doi:10.1021/bm061215p
CAS
Article
Google Scholar
Pakzad A, Simonsen J, Heiden PA, Yassar RS (2012) Size effects on the nanomechanical properties of cellulose I nanocrystals. J Mater Res 27:528–536. doi:10.1557/jmr.2011.288
CAS
Article
Google Scholar
Peng BL, Dhar N, Liu HL, Tam KC (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 89:1191–1206. doi:10.1002/cjce.20554
CAS
Article
Google Scholar
Qing Y, Sabo R, Zhu JY, Agarwal U, Cai ZY, Wu YQ (2013) A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydr Polym 97:226–234
CAS
Article
Google Scholar
Quievy N, Jacquet N, Sclavons M, Deroanne C, Paquot M, Devaux J (2010) Influence of homogenization and drying on the thermal stability of microfibrillated cellulose. Polym Degrad Stabil 95:306–314. doi:10.1016/j.polymdegradstab.2009.11.020
CAS
Article
Google Scholar
Rahimi M, Behrooz R (2011) Effect of cellulose characteristic and hydrolyze conditions on morphology and size of nanocrystal cellulose extracted from wheat straw. Int J Polym Mater 60:529–541. doi:10.1080/00914037.2010.531820
CAS
Article
Google Scholar
Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromol 5:1671–1677. doi:10.1021/bm034519+
CAS
Article
Google Scholar
Rueda L, d’Arlas BF, Zhou Q, Berglund LA, Corcuera MA, Mondragon I, Eceiza A (2011) Isocyanate-rich cellulose nanocrystals and their selective insertion in elastomeric polyurethane. Compos Sci Technol 71:1953–1960. doi:10.1016/j.compscitech.2011.09.014
CAS
Article
Google Scholar
Sacui IA et al (2014) Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Appl Mater Interfaces 6:6127–6138. doi:10.1021/am500359f
CAS
Article
Google Scholar
Saralegi A, Gonzalez ML, Valea A, Eceiza A, Corcuera MA (2014) The role of cellulose nanocrystals in the improvement of the shape-memory properties of castor oil-based segmented thermoplastic polyurethanes. Compos Sci Technol 92:27–33. doi:10.1016/j.compscitech.2013.12.001
CAS
Article
Google Scholar
Scheirs J, Camino G, Tumiatti W (2001) Overview of water evolution during the thermal degradation of cellulose. Eur Polym J 37:933–942. doi:10.1016/S0014-3057(00)00211-1
CAS
Article
Google Scholar
Scherrer P (1918) Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr Ges Wiss Göttingen 26:98–100
Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794. doi:10.1177/004051755902901003
CAS
Article
Google Scholar
Sheltami RM, Abdullah I, Ahmad I, Dufresne A, Kargarzadeh H (2012) Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydr Polym 88:772–779. doi:10.1016/j.carbpol.2012.01.062
CAS
Article
Google Scholar
Tanaka F, Iwata T (2006) Estimation of the elastic modulus of cellulose crystal by molecular mechanics simulation. Cellulose 13:509–517. doi:10.1007/s10570-006-9068-x
CAS
Article
Google Scholar
Tashiro K, Kobayashi M (1991) Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer 32:1516–1526
CAS
Article
Google Scholar
Teixeira ED, Correa AC, Manzoli A, Leite FL, de Oliveira CR, Mattoso LHC (2010) Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose 17:595–606. doi:10.1007/s10570-010-9403-0
CAS
Article
Google Scholar
Tonoli GH, Teixeira EM, Correa AC, Marconcini JM, Caixeta LA, Pereira-da-Silva MA, Mattoso LH (2012) Cellulose micro/nanofibres from Eucalyptus kraft pulp: preparation and properties. Carbohydr Polym 89:80–88. doi:10.1016/j.carbpol.2012.02.052
CAS
Article
Google Scholar
Toon A, Crisp MD, Gamage H, Mant J, Morris DC, Schmidt S, Cook LG (2015) Key innovation or adaptive change? A test of leaf traits using Triodiinae in Australia. Sci Rep 5:12398. doi:10.1038/srep12398
CAS
Article
Google Scholar
Wagner R, Moon R, Pratt J, Shaw G, Raman A (2011) Uncertainty quantification in nanomechanical measurements using the atomic force microscope. Nanotechnology 22:455703. doi:10.1088/0957-4484/22/45/455703
Article
Google Scholar
Wang N, Ding EY, Cheng RS (2007) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48:3486–3493. doi:10.1016/j.polymer.2007.03.062
CAS
Article
Google Scholar
Werner K, Pommer L, Brostrom M (2014) Thermal decomposition of hemicelluloses. J Anal Appl Pyrol 110:130–137. doi:10.1016/j.jaap.2014.08.013
CAS
Article
Google Scholar
Wu XW, Moon RJ, Martini A (2013) Crystalline cellulose elastic modulus predicted by atomistic models of uniform deformation and nanoscale indentation. Cellulose 20:43–55. doi:10.1007/s10570-012-9823-0
CAS
Article
Google Scholar
Yang HP, Yan R, Chen HP, Lee DH, Zheng CG (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788. doi:10.1016/j.fuel.2006.12.013
CAS
Article
Google Scholar
Yin Y, Berglund L, Salmen L (2011a) Effect of steam treatment on the properties of wood cell walls. Biomacromol 12:194–202. doi:10.1021/bm101144m
CAS
Article
Google Scholar
Yin Y, Berglund L, Salmén L (2011b) Effect of Steam Treatment on the Properties of Wood Cell Walls. Biomacromol 12:194–202. doi:10.1021/bm101144m
CAS
Article
Google Scholar
Yoon SY, Han SH, Shin SJ (2014) The effect of hemicelluloses and lignin on acid hydrolysis of cellulose. Energy 77:19–24. doi:10.1016/j.energy.2014.01.104
CAS
Article
Google Scholar
Yue YY, Zhou CJ, French AD, Xia G, Han GP, Wang QW, Wu QL (2012) Comparative properties of cellulose nano-crystals from native and mercerized cotton fibers. Cellulose 19:1173–1187. doi:10.1007/s10570-012-9714-4
CAS
Article
Google Scholar
Zhao HB, Kwak JH, Zhang ZC, Brown HM, Arey BW, Holladay JE (2007) Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis. Carbohydr Polym 68:235–241. doi:10.1016/j.carbpol.2006.12.013
CAS
Article
Google Scholar
Zhao Y, Zhang Y, Lindstrom ME, Li J (2015) Tunicate cellulose nanocrystals: preparation, neat films and nanocomposite films with glucomannans. Carbohydr Polym 117:286–296. doi:10.1016/j.carbpol.2014.09.020
CAS
Article
Google Scholar