Skip to main content
Log in

Electromagnetic shielding of polypyrrole–sawdust composites: polypyrrole globules and nanotubes

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Economic and efficient materials for the shielding of electromagnetic interference are required by many applications. Electrically conducting composite materials based on wood sawdust modified by polypyrrole (PPy) with different morphology, globular and nanotubular, were prepared through in-situ polymerization of pyrrole with the use of iron (III) chloride as an oxidant. The effect of PPy morphology and content in composite with sawdust on the DC conductivity and shielding effectiveness (SE) were investigated. Composites of sawdust with globular PPy demonstrated higher DC conductivity as compared to those with PPy nanotubes as long as PPy content was less or equal to 18 vol.%. Above this concentration the opposite trend was observed. The SE of composites was evaluated theoretically in the radio-frequency range, and measured by waveguide method in the frequency range 5.85–8.2 GHz. The SE increased with increase in DC conductivity, and good agreement between the theoretically calculated SE and experimental results was achieved. The SE of the composites extended over 20 dB level above 18 vol.% PPy at the thickness of the order of 10 μm. Polypyrrole nanotubes perfomed better than globular PPy at high conducting polymer content. The composites are good candidates for the application as shielding materials in the microwave band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Babayan V, Kazantseva NE, Sapurina I, Moučka R, Vilčáková J, Stejskal J (2012) Magnetoactive feature of in-situ polymerised polyaniline film developed on the surface of manganese-zinc ferrite. Appl Surf Sci 258:7707–7716. doi:10.1016/j.apsusc.2012.04.126

    Article  CAS  Google Scholar 

  • Blinova NV, Stejskal J, Trchová M, Prokeš J, Omastová M (2007) Polyaniline and polypyrrole: a comparative study of the preparation. Eur Polym J 43:2331–2341. doi:10.1016/j.eurpolymj.2007.03.045

    Article  CAS  Google Scholar 

  • Bober P, Stejskal J, Šeděnková I, Trchová M, Martinková L, Marek J (2015) The deposition of globular polypyrrole and polypyrrole nanotubes on cotton textile. Appl Surf Sci 356:737–741. doi:10.1016/j.apsusc.2015.08.105

    Article  CAS  Google Scholar 

  • Colaneri NF, Shacklette LW (1992) EMI shielding measurements of conductive polymer blends. IEEE Trans Instrum Meas 41:291–297. doi:10.1109/19.137363

    Article  Google Scholar 

  • Gashti MP, Ghehi ST, Arekhloo SV, Mirsmaeeli A, Kiumarsi A (2015) Electromagnetic shielding response of UV-induced polypyrrole/silver coated wool. Fiber Polym 16:585–592. doi:10.1007/s12221-015-0585-9

    Article  CAS  Google Scholar 

  • Kopecká J, Kopecký D, Vrňata M, Fitl P, Stejskal J, Trchová M, Bober P, Morávková Z, Prokeš J, Sapurina I (2014) Polypyrrole nanotubes: mechanism of formation. RSC Adv 4:1551–1558. doi:10.1039/c3ra45841e

    Article  Google Scholar 

  • Lee CY, Song HG, Jang KS, Oh EJ, Epstein AJ, Joo J (1999) Electromagnetic interference shielding efficiency of polyaniline mixtures and multilayer films. Synth Met 102:1346–1349. doi:10.1016/S0379-6779(98)00234-3

    Article  CAS  Google Scholar 

  • Maity S, Singha K, Debnath P, Singha M (2013) Textiles in electromagnetic radiation protection. J Saf Eng 2:11–19. doi:10.5923/j.safety.20130202.01

    Google Scholar 

  • Mohan RR, Varma SJ, Sankaran J (2016) Impressive electromagnetic shielding effects exhibited by highly ordered, micrometer thick polyaniline films. Appl Phys Lett 108:154101. doi:10.1063/1.4945791

    Article  Google Scholar 

  • Moučka R, Vilčáková J, Kazantseva NE, Lopatin AV, Sáha P (2008) The influence of interfaces on the dielectric properties of MnZn-based hybrid polymer composites. J Appl Phys 104:103718. doi:10.1063/1.3028272

    Article  Google Scholar 

  • Sapurina I, Stejskal J (2008) The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polym Int 57:1295–1325. doi:10.1002/pi.2476

    Article  CAS  Google Scholar 

  • Sapurina IY, Frolov VI, Shabsel’s BM, Stejskal J (2003) A conducting composite of polyaniline and wood. Russ J Appl Chem 76:835–839. doi:10.1023/A:1026050428908

    Article  CAS  Google Scholar 

  • Sapurina I, Kazantseva NE, Ryvkina NG, Prokeš J, Sáha P, Stejskal J (2005) Electromagnetic radiation shielding by composites of conducting polymers and wood. J Appl Polym Sci 95:807–814. doi:10.1002/app.21240

    Article  CAS  Google Scholar 

  • Sapurina I, Li Y, Alekseeva E, Bober P, Trchová M, Morávková Z, Stejskal J (2017) Polypyrrole nanotubes: the tuning of morphology and conductivity. Polymer 113:247–258. doi:10.1016/j.polymer.2017.02.064

    Article  CAS  Google Scholar 

  • Sasso C, Beneventi D, Zeno E, Chaussy D, Petit-Conil M, Belgacem N (2011) Polypyrrole and polypyrrole/wood-derived materials conducting composites: a review. BioResources 6:3585–3620

    Google Scholar 

  • Stejskal J, Sapurina I (2005) Polyaniline: thin films and colloidal dispersions (IUPAC technical report). Pure Appl Chem 77:815–826. doi:10.1351/pac200577050815

    Article  CAS  Google Scholar 

  • Stejskal J, Trchová M, Fedorova S, Sapurina I, Zemek J (2003) Surface polymerization of aniline on silica gel. Langmuir 19:3013–3018. doi:10.1021/la026672f

    Article  CAS  Google Scholar 

  • Stejskal J, Trchová M, Sapurina I (2005) Flame-retardant effect of polyaniline coating deposited on cellulose fibers. J Appl Polym Sci 98:2347–2354. doi:10.1002/app.22144

    Article  CAS  Google Scholar 

  • Stejskal J, Trchová M, Brodinová J, Sapurina I (2007) Flame retardancy afforded by polyaniline deposited on wood. J Appl Polym Sci 103:24–30. doi:10.1002/app.23873

    Article  CAS  Google Scholar 

  • Trchová M, Konyushenko EN, Stejskal J, Kovářová J, Ćirić-Marjanović G (2009) The conversion of polyaniline nanotubes to nitrogen-containing carbon nanotubes and their comparison with multi-walled carbon nanotubes. Polym Degrad Stabil 94:929–938. doi:10.1016/j.polymdegradstab.2009.03.001

    Article  Google Scholar 

  • Treu A, Bardage S, Johansson M, Trey S (2014) Fungal durability of polyaniline modified wood and the impact of a low pulsed electric field. Int Biodeter Biodegr 87:26–33. doi:10.1016/j.ibiod.2013.11.001

    Article  CAS  Google Scholar 

  • Trey S, Jafarzadeh S, Johansson M (2012) In situ polymerization of polyaniline in wood veneers. ACS Appl Mater Interf 4:1760–1769. doi:10.1021/am300010s

    Article  CAS  Google Scholar 

  • Xie A, Jiang WC, Wu F, Dai XQ, Sun MX, Wang Y, Wang MY (2015a) Interfacial synthesis of polypyrrole microparticles for effective dissipation of electromagnetic waves. J Appl Phys. doi:10.1063/1.4936549

    Google Scholar 

  • Xie AM, Wu F, Sun MX, Dai XQ, Xu ZH, Qiu YY, Wang Y, Wang MY (2015b) Self-assembled ultralight three-dimensional polypyrrole aerogel for effective electromagnetic absorption. Appl Phys Lett 106:222902. doi:10.1063/1.4921180

    Article  Google Scholar 

  • Zhao H, Hou L, Lu YX (2016) Electromagnetic interference shielding of layered linen fabric/polypyrrole/nickel (LF/PPy/Ni) composites. Mater Des 95:97–106. doi:10.1016/j.matdes.2016.01.088

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The support of the Ministry of Education, Youth and Sports of the Czech Republic (NPU I, LO1504) and the Czech Science Foundation (16-02787S) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Babayan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babayan, V., Kazantseva, N.E., Moučka, R. et al. Electromagnetic shielding of polypyrrole–sawdust composites: polypyrrole globules and nanotubes. Cellulose 24, 3445–3451 (2017). https://doi.org/10.1007/s10570-017-1357-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1357-z

Keywords

Navigation