, Volume 24, Issue 7, pp 2753–2766 | Cite as

Stability and aging of solubilized dialdehyde cellulose

  • Lukáš Münster
  • Jan Vícha
  • Jiří Klofáč
  • Milan Masař
  • Pavel Kucharczyk
  • Ivo KuřitkaEmail author
Original Paper


Derivatization of alpha cellulose by periodate oxidation is an useful method for production of dialdehyde cellulose (DAC). Conversion of the 2,3-hydroxyl groups to a pair of aldehyde groups along with cleavage of the C2–C3 bond of anhydroglucose unit reduces crystallinity of initial material, leaving DAC soluble in water under mild conditions. Solubilization in hot water is necessary to obtain product in solution. The first part of our work confirmed that solubilization causes severe degradation of the molecular weight of the polymer. However, the chemistry and processes within these solutions are currently poorly understood. In the main part of the study, products of periodate oxidation were identified in acidic DAC solutions by NMR spectroscopy for the first time. Subsequent investigation of the acidic DAC solution's aging demonstrated that the low pH of the DAC solution considerably slows the degradation processes, namely the decrease of reactive aldehyde group content when compared to previous studies. Large increase in the molecular weight, observed after 14 days of aging, was explained by formation of intermolecular hemiacetals. Our results demonstrate that pH-stabilized aqueous DAC solutions remained active (e.g. applicable for cross-linking reactions) even several weeks after preparation, therefore reducing the need to prepare a fresh solution each time.


Periodate oxidation Solubilization Dialdehyde cellulose DAC Aging NMR 



This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic—Program NPU I (LO1504), Czech Science Foundation grant 16-05961S to J.V. and an internal grant from TBU in Zlin no. IGA/CPS/2015/005. The internal grant was funded by financial support for specific research by the university. The NMR study was carried out with the support of core facilities of the Central European Institute of Technology (CEITEC)—open access project ID number LM2011020, funded by the Ministry of Education, Youth and Sports of the Czech Republic under the activity “Projects of major infrastructures for research, development and innovations”.


  1. Bikales NM, Segal L (1971) Cellulose and cellulose derivatives. Wiley-Interscience, New YorkGoogle Scholar
  2. Coseri S, Biliuta G, Simionescu BC, Stana-Kleinschek K, Ribitsch V, Hagabagiu V (2013) Oxidized cellulose—survey of the most recent achievements. Carbohyd Polym 93:207–215. doi: 10.1016/j.carbpol.2012.03.086 CrossRefGoogle Scholar
  3. Engel P, Hein L, Spiess AC (2012) Derivatization-free gel permeation chromatography elucidates enzymatic cellulose hydrolysis. Biotechnol Biofuels 5:77. doi: 10.1186/1754-6834-5-77 CrossRefGoogle Scholar
  4. Fan QG, Lewis DM, Tapley KN (2001) Characterization of cellulose aldehyde using Fourier transform infrared spectroscopy. J Appl Polym Sci 82:1195–1202. doi: 10.1002/app.1953 CrossRefGoogle Scholar
  5. Fox SC, Li B, Xu D, Edgar DM (2011) Regioselective esterification and etherification of cellulose: a review. Biomacromolecules 12:1956–1972. doi: 10.1021/bm200260d CrossRefGoogle Scholar
  6. Hou Q, Liu W, Liu Z, Duan B, Bai L (2008) Characteristics of antimicrobial fibers prepared with wood periodate oxycellulose. Carbohydr Polym 74:235–240. doi: 10.1016/j.carbpol.2008.02.010 CrossRefGoogle Scholar
  7. Kim JY, Choi HM (2014) Cationization of periodate-oxidized cotton cellulose with choline chloride. Cell Chem Technol 48:25–32Google Scholar
  8. Kim UJ, Kuga S (2001) Thermal decomposition of dialdehyde cellulose and its nitrogen-containing derivatives. Thermochim Acta 369:79–85. doi: 10.1016/S0040-6031(00)00734-6 CrossRefGoogle Scholar
  9. Kim UJ, Kuga S, Wada M, Okano T, Kondo T (2000) Periodate oxidation of crystalline cellulose. Biomacromolecules 1:488–492. doi: 10.1021/bm0000337 CrossRefGoogle Scholar
  10. Kim UJ, Wada M, Kuga S (2004) Solubilization of dialdehyde cellulose by hot water. Carbohydr Polym 56:7–10. doi: 10.1016/j.carbpol.2003.10.013 CrossRefGoogle Scholar
  11. Kono H, Hashimoto H, Shimizu Y (2015) NMR characterization of cellulose acetate: chemical shift assignments, substituent effects, and chemical shift additivity. Carbohydr Polym 118:91–100. doi: 10.1016/j.carbpol.2014.11.004 CrossRefGoogle Scholar
  12. Koprivica S, Siller M, Hosoya T, Roggenstein W, Rosenau T, Potthast A (2016) Regeneration of aqueous periodate solutions by ozone treatment: a sustainable approach for dialdehyde cellulose production. Chemsuschem 9:825–833. doi: 10.1002/cssc.201501639 CrossRefGoogle Scholar
  13. Larsson PA, Pettersson T, Wågberg L (2014) Improved barrier films of cross-linked cellulose nanofibrils: a microscopy study. Green Mat 2:163–168. doi: 10.1680/gmat.14.00018 CrossRefGoogle Scholar
  14. Laҫin NT (2014) Development of biodegradable antibacterial cellulose based hydrogel membranes for wound healing. Int J Biol Macromol 67:22–27. doi: 10.1016/j.ijbiomac.2014.03.003 CrossRefGoogle Scholar
  15. Li J, Wan Y, Li L, Liang H, Wang J (2009) Preparation and characterization of 2,3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds. Mater Sci Eng, C 29:1635–1642. doi: 10.1016/j.msec.2009.01.006 CrossRefGoogle Scholar
  16. Liimatainen H, Sirviö JA, Pajari H, Hormi O, Niinimäki J (2013) Regeneration and recycling of aqueous periodate solution in dialdehyde cellulose production. J Wood Chem Technol 33:258–266. doi: 10.1080/02773813.2013.783076 CrossRefGoogle Scholar
  17. Lindh J, Carlsson DO, Strømme M, Mihranyan A (2014) Convenient one-pot formation of 2,3-dialdehyde cellulose beads via periodate oxidation of cellulose in water. Biomacromolecules 15:1928–1932. doi: 10.1021/bm5002944 CrossRefGoogle Scholar
  18. Maekawa E (1991) Analysis of oxidized moiety of partially periodate-oxidized cellulose by NMR spectroscopy. J Appl Polym Sci 43:417–422. doi: 10.1002/app.1991.070430301 CrossRefGoogle Scholar
  19. Maekawa E, Koshijima T (1984) Properties of 2,3-dicarboxy cellulose combined with various metallic ions. J Appl Polym Sci 29:2289–2297. doi: 10.1002/app.1984.070290705 CrossRefGoogle Scholar
  20. Mester LJ (1955) The formazan reaction in proving the structure of periodate oxidized polysaccharides. Am Chem Soc 77:5452–5453. doi: 10.1021/ja01625a097 CrossRefGoogle Scholar
  21. Nikiforova TE, Kozlov VA (2011) Various factors affecting heavy metal ion sorption from aqueous media by sorbent containing cellulose. Prot Met Phys Chem Surf 47:20–24. doi: 10.1134/S2070205110051016 CrossRefGoogle Scholar
  22. Röhrling J, Potthast A, Lange T, Rosenau T, Adorjan I, Hofinger A et al (2002) Synthesis of oxidized methyl 4-O-methyl-beta-d-glucopyranoside and methyl beta-d-glucopyranosyl-(1– > 4)-beta-d-glucopyranoside derivatives as substrates for fluorescence labeling reactions. Carbohydr Res 337:691–700. doi: 10.1016/S0008-6215(02)00048-4 CrossRefGoogle Scholar
  23. Siller M, Amer H, Bacher M, Roggenstein W, Rosenau T, Potthast A (2015) Effects of periodate oxidation on cellulose polymorphs. Cellulose 22:2245–2261. doi: 10.1007/s10570-015-0648-5 CrossRefGoogle Scholar
  24. Sirviö JA, Hyvakko U, Liimatainen H, Niinimäki J, Hormi O (2011a) Periodate oxidation of cellulose at elevated temperatures using metal salts as cellulose activators. Carbohydr Polym 83:1293–1297. doi: 10.1016/j.carbpol.2010.09.036 CrossRefGoogle Scholar
  25. Sirviö JA, Liimatainen H, Niinimäki J, Hormi O (2011b) Dialdehyde cellulose microfibers generated from wood pulp by milling-induced periodate oxidation. Carbohydr Polym 86:260–265. doi: 10.1016/j.carbpol.2011.04.054 CrossRefGoogle Scholar
  26. Sirviö JA, Liimatainen H, Visanko M, Niinimäki J (2014) Optimization of dicarboxylic acid cellulose synthesis: reaction stoichiometry and role of hypochlorite scavengers. Carbohydr Polym 114:73–77. doi: 10.1016/j.carbpol.2014.07.081 CrossRefGoogle Scholar
  27. Spedding HJ (1960) Infrared spectra of periodate-oxidized cellulose. J Chem Soc. doi: 10.1039/JR9600003147 Google Scholar
  28. Sulaeva I, Klinger KM, Amer H, Henniges U, Rosenau T, Potthast A (2015) Determination of molar mass distributions of highly oxidized dialdehyde cellulose by size exclusion chromatography and asymmetric flow field-flow fractionation. Cellulose 22:3569–3581. doi: 10.1007/s10570-015-0769-x CrossRefGoogle Scholar
  29. Varavinit S, Chaokasem N, Shobsgob S (2001) Covalent immobilization of a glucoamylase to bagasse dialdehyde cellulose. World J Microbiol Biotechnol 17:721–725. doi: 10.1023/A:1012984802624 CrossRefGoogle Scholar
  30. Veelaert S, Wit D, Gotlieb KF, Verhé R (1997) Chemical and physical transitions of periodate oxidized potato starch in water. Carbohydr Polym 33:153162. doi: 10.1016/S0144-8617(97)00046-5 CrossRefGoogle Scholar
  31. Weber V, Ettenauer M, Linsberger I, Loth F, Thummler K, Feldner A et al (2010) Functionalization and application of cellulose microparticles as adsorbents in extracorporeal blood purification. Macromol Symp 294:90–95. doi: 10.1002/masy.200900042 CrossRefGoogle Scholar
  32. Zugenmaier P (2008) Crystalline cellulose and cellulose derivatives: characterization and structure. In: Zugenmaier P (ed) Cellulose derivatives. Springer, Berlin, Heidelberg, pp 175–206CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Centre of Polymer Systems, University InstituteTomas Bata University in ZlinZlínCzechia

Personalised recommendations