Skip to main content
Log in

By-products of the cider production: an alternative source of nutrients to produce bacterial cellulose

Cellulose Aims and scope Submit manuscript

Abstract

In the present work a culture process to produce bacterial cellulose (BC) using by-products of the cider production from the Basque Country was investigated. The apple pomace was mixed with sugar cane (AR/SC medium) and the mixture was found to be a potential carbon source for Gluconacetobacter medellinensis strain ID13488 since higher cellulose production was observed with respect to the commercial Hestrin and Shramm medium (H–S). The culture media were characterized in terms of pH, oxygen and sugars consumption. The expression level of the operon bcs (genes involved in BC biosynthesis) in apple residue containing medium respect to standard H–S medium was determined. It was found that in AR/SC medium the expression levels of bcsA gene, wich is the first gene of the bcs operon, was increased in 1.5-fold respect to the H–S media which correlates with the fact that BC production in AR/SC media is higher than in H–S media. The physico-chemical and mechanical properties, microstructure, crystallinity and water holding capacity of the biosynthesized BC membranes were analyzed and it was found that, in general, the BC obtained from AR/SC medium presented superior properties than that obtained from H–S medium. In this study an economic method for BC production is proposed with suitable properties for many applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Algar I, Fernandes SCM, Mondragon G, Castro C, Garcia-Astrain C, Gabilondo N, Retegi A, Eceiza A (2015) Pineapple agroindustrial residues for the production of high value bacterial cellulose with different morphologies. J Appl Polym Sci 132:41237(1–8)

    Article  Google Scholar 

  • Algar I, Garcia-Astrain C, Gonzalez A, Martin L, Gabilondo N, Retegi A, Eceiza A (2016) Improved permeability properties for bacterial cellulose/montmorillonite hybrid bionanocomposite membranes by in-situ assembling. J Renew Mater 4:57–65

    Article  Google Scholar 

  • Alonso-Salces RM, Ndjoko K, Queiroz EF, Ioset JR, Hostettmann K, Berrueta LA, Gallo B, Vicente F (2004) On-line characterisation of apple polyphenols by liquid chromatography coupled with mass spectrometry and ultraviolet absorbance detection. J Chromatogr A 1046:89–100

    Article  CAS  Google Scholar 

  • ASTM-American Society for Testing and Materials. Test method for intrinsic viscosity of cellulose, ASTM-D1795. doi:10.1520/D1795-96R07E01

  • Belgacem MN, Gandini A (2008) Monomers, polymers and composites from renewable resources, 1st edn. Elsevier, Amsterdam, pp 369–383

    Google Scholar 

  • Carreira P, Mendes JAS, Trovatti E, Serafim LS, Freire CSR, Silvestre AJD, Neto CP (2011) Utilization of residues from agro-forest industries in the production of high value bacterial cellulose. Bioresour Technol 102:7354–7360

    Article  CAS  Google Scholar 

  • Castro C, Zuluaga R, Putaux JL, Caro G, Mondragon I, Gañán P (2011) Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydr Polym 84:96–102

    Article  CAS  Google Scholar 

  • Castro C, Zuluaga R, Álvarez C, Putaux JL, Caro G, Rojas OJ, Mondragon I, Gañán P (2012) Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus. Carbohydr Polym 89:1033–1037

    Article  CAS  Google Scholar 

  • Cerrutti P, Roldán P, Martínez-García R, Galvagno MA, Vázquez A, Foresti ML (2016) Production of bacterial nanocellulose from wine industry residues: importance of fermentation time on pellicle characteristics. J Appl Polym Sci. doi:10.1002/app.43109

    Google Scholar 

  • Cheng KC, Catchmark JM, Demirci A (2009) Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of material property. Cellulose 16:1033–1045

    Article  CAS  Google Scholar 

  • Cleenwerck I, De Vos P, De Vuyst L (2010) Phylogeny and differentiation of species of the genus Gluconacetobacter and related taxa based on multilocus sequence analyses of housekeeping genes and reclassification of Acetobacter xylinus subsp. sucrofermentans as Gluconacetobacter sucrofermentans (Toyosaki et al. 1996) sp. nov., comb. nov. Int J Syst Evol Microbiol 60:2277–2283

    Article  Google Scholar 

  • Florea M, Hagemann H, Santosa G, Abbott J, Micklem C, Spencer-Milnes X, de Arroyo GarciaL, Paschou D, Lazenbatt C, Kong D, Chughtai H, Jensen K, Freemont P, Kitney R, Reeve B, Ellis T (2016) Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain. PNAS. doi:10.1073/pnas.1522985113

    Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • George J, Siddaramaiah (2012) High performance edible nanocomposite films containing bacterial cellulose. Nanocryst Carbohydr Polym 87:2031–2037

    Article  CAS  Google Scholar 

  • Gomes FP, Silva NHCS, Trovatti E, Serafim LS, Duarte MF, Silvestre AJD, Neto CP, Freire CSR (2013) Production of bacterial cellulose by Gluconacetobacter sacchari using dry olive mil residue. Biomass Bioenergy 55:205–211

    Article  CAS  Google Scholar 

  • Guhados G, Wan W, Hutter JL (2005) Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21:6642–6646

    Article  CAS  Google Scholar 

  • Gullón B, Falqué E, Alonso JL, Parajó JC (2007) Evaluation of apple pomace as a raw material for alternative applications in food industries. Food Technol Biotechnol 45:426–433

    Google Scholar 

  • Hu W, Chen S, Yang J, Li Z, Wang H (2014) Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydr Polym 101:1043–1060

    Article  CAS  Google Scholar 

  • Jipa IM, Stoica-Guzun A, Stroescu M (2012) Controlled release of sorbic acid from bacterial cellulose based mono and multilayer antimicrobial films. Food Sci Technol 47:400–406

    CAS  Google Scholar 

  • Jozala AF, Lencastre-Novaes L, Lopes AM, Santos-Ebinuma V, Gava Mazzola P, Pessoa-Jr A, Grotto D, Gerenutti M, Vinicius Chaud M (2016) Bacterial nanocellolose production and application: a 10-year overview. Appl Microbiol Biotechnol 100:2063–2072

    Article  CAS  Google Scholar 

  • Jung HI, Jeong JH, Lee OM, Park GT, Kim KK, Park HC, Lee SM, Kim YG, Son HJ (2010) Influence of glycerol on production and structural–physical properties of cellulose from Acetobacter sp. V6 cultured in shake flasks. Bioresour Technol 101:3602–3608

    Article  CAS  Google Scholar 

  • Kiziltas EE, Kiziltas A, Gardner DJ (2015) Synthesis of bacterial cellulose using hot water extracted wood sugars. Carbohydr Polym 124:131–138

    Article  Google Scholar 

  • Krässig HA (1993) Cellulose: structure, accessibility and reactivity. Gordon & Breach, Pennsylvania

    Google Scholar 

  • Kurosumi A, Sasaki C, Yamashita Y, Nakamura Y (2009) Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydr Polym 76:333–335

    Article  CAS  Google Scholar 

  • Lin D, Lopez-Sanchez P, Li R, Li Z (2014) Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source. Bioresour Technol 151:113–119

    Article  CAS  Google Scholar 

  • Marx-Figini M (1978) Significance of the intrinsic viscosity ratio of unsubstituted and nitrated cellulose in different solvents. Angew Makromol Chem 72:161–171

    Article  CAS  Google Scholar 

  • Mikkelsen D, Flanagan BM, Dykes GA, Gidley MJ (2009) Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. J Appl Microbiol 107:1364–5072

    Article  Google Scholar 

  • Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Park WH, Youk JH (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391

    Article  CAS  Google Scholar 

  • Ougiya H, Watanabe K, Matsumura T, Yoshinaga F (1998) Relationship between suspension properties and fibril structure of disintegrated bacterial cellulose. Biosci Biotechnol Biochem 62:1714–1719

    Article  CAS  Google Scholar 

  • Petersen N, Gatenholm P (2011) Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl Microbiol Biotechnol 91:1277–1286

    Article  CAS  Google Scholar 

  • Pourramezan GZ, Roayaei AM, Quezelbash QR (2009) Optimization of culture conditions of bacterial cellulose production by Azetobacter sp. 4B-2. Biotechnology 8:150–154

    Article  CAS  Google Scholar 

  • Poyrazoglu Coban E, Biyik H (2011) Evaluation of different pH and temperatures for bacterial cellulose production in HS (Hestrin–Scharmm) medium and beetmolasses medium. Afr J Microbiol Res 5:1037–1045

    Google Scholar 

  • Retegi A, Gabilondo N, Peña C, Zuluaga R, Castro C, Gañan P, de la Caba K, Mondragon I (2010) Bacterial cellulose films with controlled microstructure–mechanical property relationships. Cellulose 1:661–669

    Article  Google Scholar 

  • Retegi A, Algar I, Martin L, Altuna F, Stefani P, Zuluaga R, Gañán P, Mondragón I (2012) Sustainable optically transparent composites based on epoxidized soy-bean oil (ESO) matrix and high contents of bacterial cellulose (BC). Cellulose 29:103–109

    Article  Google Scholar 

  • Römling U, Galperin MY (2015) Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. Trends Microbiol 23:545–557

    Article  Google Scholar 

  • Saibuatong O-A, Phisalaphong M (2010) Novo aloe vera–bacterial cellulose composite film from biosynthesis. Carbohydr Polym 79:455–460

    Article  CAS  Google Scholar 

  • Schmittgen TD, Livak KL (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108

    Article  CAS  Google Scholar 

  • Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  • Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym 98:1585–1598

    Article  CAS  Google Scholar 

  • Shi QS, Feng J, Li WR, Zhou G, Chen AM, Ouyang YS, Chen YB (2013) Effect of different conditions on the average degree of polymerization of bacterial cellulose produced by Gluconacetobacter Intermedius BC-41. Cellul Chem Technol 47:503–508

    CAS  Google Scholar 

  • Shi Z, Zhang Y, Phillips GO, Yang G (2014) Utilization of bacterial cellulose in food. Food Hydrocoll 35:539–545

    Article  CAS  Google Scholar 

  • Stoica-Guzun A, Stroescu M, Jipa I, Dobre L, Zaharescu T (2013) Effect of γ irradiation on poly(vinyl alcohol) and bacterial cellulose composites used as packaging materials. Radiat Phys Chem 84:200–204

    Article  CAS  Google Scholar 

  • Sullivan EM, Moon RJ, Kalaitzidou K (2015) Processing and characterization of cellulose nanocrystals/polylactic acid nanocomposite films. Materials 8:8106–8116

    Article  Google Scholar 

  • Surma-Ślusarska B, Presler S, Danielewicz D (2008) Characteristics of bacterial cellulose obtained from Acetobacter xylinum culture for application in papermaking. Fibres Text East Eur 4:108–111

    Google Scholar 

  • Szymańska-Chargot M, Cybulska J, Zdunek A (2011) Sensing the structural differences in cellulose from apple and bacterial cell wall materials by Raman and FT-IR spectroscopy. Sensors 11:5543–5560

    Article  Google Scholar 

  • Tang W, Jia S, Yuanyuan Jia Y, Yang H (2010) The influence of fermentation conditions and post-treatment methods on porosity of bacterial cellulose membrane. World J Microbiol Biotechnol 26:125–131

    Article  CAS  Google Scholar 

  • Tsouko E, Kourmentza C, Ladakis D, Kopsahelis N, Mandala I, Papanikolaou S, Paulokis F, Alves V, Koutinas A (2015) Bacterial cellulose production from industrial waste and by-product streams. Int J Mol Sci 16:14832–14849

    Article  CAS  Google Scholar 

  • Ul-Islam M, Khan T, Park JK (2012) Water holding capacity ad release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydr Polym 88:596–603

    Article  CAS  Google Scholar 

  • Xu X, Liu F, Jiang L, Zhu JY, Haagenson D, Wiesenborn DP (2013) Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5:2999–3009

    Article  CAS  Google Scholar 

  • Zahan KA, Pa’e N, Muhamad II (2015) Monitoring the effect of pH on bacterial cellulose production and Acetobacter xylinum 0416 growth in a rotary discs reactor. Arab J Sci Eng 40:1881–1885

    Article  CAS  Google Scholar 

  • Zeng M, Laromaine A, Roig A (2014) Bacterial cellulose films: influence of bacterial strain and drying route on film properties. Cellulose 21:4455–4469

    Article  CAS  Google Scholar 

  • Zogaj X, Nimtz M, Rohde M, Bokranz W, Römling U (2001) The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39:1452–1463

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank for the financial support from the Foundation Domingo Martınez (2015-Area Materiales 2), the Spanish Ministry of Economy and Competitiveness (MINECO) (MAT2013-43076-R and MAT2016-76294-R) and the Basque Government in the frame of Grupos Consolidados (IT-776-13). We are also grateful to the research services provided by SGIker, ‘Macrobehaviour-Mesostructure-Nanotechnology’ unit facilities, X-ray service of Molecules and Materials unit and Phytotron Service of UPV/EHU and European funding (ERDF and ESF). L.U. wishes to acknowledge the Basque Government for its PhD grant PIF PRE_2014_1_371.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aloña Retegi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urbina, L., Hernández-Arriaga, A.M., Eceiza, A. et al. By-products of the cider production: an alternative source of nutrients to produce bacterial cellulose. Cellulose 24, 2071–2082 (2017). https://doi.org/10.1007/s10570-017-1263-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1263-4

Keywords

Navigation