Skip to main content
Log in

Topochemistry of cellulose nanofibers resulting from molecular and polymer grafting

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The aim of this study was to synthesize hydrophobic cellulose nanofibers (CNFs) using different chemical treatments including polymer and molecular grafting. For polymer grafting, immobilizing poly (butyl acrylate) (PBA) and poly (methyl methacrylate) (PMMA) on CNFs were implemented by the free radical method. Also, acetyl groups were introduced directly onto the CNFs surface by acetic anhydride for molecular grafting. The gravimetric and X-ray photoelectron spectroscopy analysis showed the high grafting density of PMMA on the surface of CNFs. AFM results revealed that molecular grafting created non-uniformity on the CNFs surface, as compared to polymer brushes. In addition, thermodynamic work of adhesion and work of cohesion for the modified CNFs were reduced in water and diiodomethane solvents. Dispersion factor was studied to indicate the dispersibility of CNFs in polar and non-polar media. Dispersion energy was reduced after modification as a result of decreasing interfacial tension and the dispersibility of modified CNFs was improved in diiodomethane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5

Similar content being viewed by others

References

  • Abdul Khalil HPS, Bhat AH, IreanaYusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979. doi:10.1016/j.carbpol.2011.08.078

    Article  CAS  Google Scholar 

  • Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues—Wheat straw and soy hulls. Bioresour Technol 99:1664–1671. doi:10.1016/j.biortech.2007.04.029

    Article  CAS  Google Scholar 

  • Ashori A, Babaee M, Jonoobi M, Hamzeh Y (2014) Solvent-free acetylation of cellulose nanofibers for improving compatibility and dispersion. Carbohydr Polym 102:369–375. doi:10.1016/j.carbpol.2013.11.067

    Article  CAS  Google Scholar 

  • Aveyard R, Haydon DA (1973) An introduction to the principles of surface chemistry. Cambridge University Press, Cambridge

    Google Scholar 

  • Baiardo M, Frisoni G, Scandola M, Licciardello A (2002) Surface chemical modification of natural cellulose fibers. J Appl Polym Sci 83:38–45. doi:10.1002/app.2229

    Article  CAS  Google Scholar 

  • Bei Wang MS (2007) Dispersion of soybean stock-based nanofiber in a plastic matrix. Polym Int 56:538–546. doi:10.1002/pi.2167

    Article  Google Scholar 

  • Bhushan B, Jung YC (2011) Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Progr Mater Sci 56:1–108. doi:10.1016/j.pmatsci.2010.04.003

    Article  CAS  Google Scholar 

  • Brown EE, Laborie M-PG (2007) Bioengineering bacterial cellulose/poly(ethylene oxide). Nanocompos Biomacromol 8:3074–3081. doi:10.1021/bm700448x

    Article  CAS  Google Scholar 

  • Chen W, Yu H, Liu Y, Hai Y, Zhang M, Chen P (2011) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18:433–442. doi:10.1007/s10570-011-9497-z

    Article  CAS  Google Scholar 

  • De Menezes AJ, Longo E, Leite FL, Dufresne A (2014) Characterization of cellulose nanocrystals grafted with organic acid chloride of different sizes. J Renew Mat 2:306–313. doi:10.7569/JRM.2014.634121

    Google Scholar 

  • De Menezes AJ, Siqueira G, Curvelo AAS, Dufresne A (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene. Nanocompos Polym 50:4552–4563. doi:10.1016/j.polymer.2009.07.038

    Article  Google Scholar 

  • Dufresne A, ThomasS Pothan L (2013) Biopolymer nanocomposproces, properties and applications. Wiley, New York

    Book  Google Scholar 

  • Eriksson M, Notley SM, Wågberg L (2007) Cellulose thin films: degree of cellulose ordering and its influence on adhesion. Biomacromol 8:912–919. doi:10.1021/bm061164w

    Article  CAS  Google Scholar 

  • Espino-Pérez E, Domenek S, Belgacem N, Sillard C, Bras J (2014) Green process for chemical functionalization of nanocellulose with carboxylic acids. Biomacromol 15:4551–4560. doi:10.1021/bm5013458

    Article  Google Scholar 

  • Extrand CW (2004) Criteria for ultralyophobic surfaces. Langmuir 20:5013–5018. doi:10.1021/la036481s

    Article  CAS  Google Scholar 

  • Favier V, Cavaille JY, Canova GR, Shrivastava SC (1997) Mechanical percolation in cellulose whisker nanocomposites. Polym Eng Sci 37:1732–1739. doi:10.1002/pen.11821

    Article  CAS  Google Scholar 

  • Filpponen I, Kontturi E, Nummelin S, Rosilo H, Kolehmainen E, Ikkala O, Laine J (2012) Generic method for modular surface modification of cellulosic materials in aqueous medium by sequential “Click” reaction and adsorption. Biomacromol 13:736–742. doi:10.1021/bm201661k

    Article  CAS  Google Scholar 

  • Freire CSR, Silvestre AJD, PascoalNeto C, Gandini A, Fardim P, Holmbom B (2006) Surface characterization by XPS, contact angle measurements and ToF-SIMS of cellulose fibers partially esterified with fatty acids. J Colloid Interface Sci 301:205–209. doi:10.1016/j.jcis.2006.04.074

    Article  CAS  Google Scholar 

  • Gardner DJ, Oporto GS, Mills R, Samir MASA (2008) Adhesion and surface issues in cellulose and nanocellulose. J Adhes Sci Technol 22:545–567. doi:10.1163/156856108X295509

    Article  CAS  Google Scholar 

  • Hu W, Chen S, Yang J, Li Z, Wang H (2014) Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydr Polym 101:1043–1060. doi:10.1016/j.carbpol.2013.09.102

    Article  CAS  Google Scholar 

  • Ifuku S, Nogi M, Abe K, Handa K, Nakatsubo F, Yano H (2007) Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromol 8:1973–1978. doi:10.1021/bm070113b

    Article  CAS  Google Scholar 

  • Islam MT, Alam MM, Zoccola M (2013) Review on modification of nanocellullose for application in composites. Int J Innov Res Sci Eng Tech 2:5444–5451

    Google Scholar 

  • Jonoobi M, Harun J, Mathew AP, Hussein MZB, Oksman K (2010) Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose 17:299–307. doi:10.1007/s10570-009-9387-9

    Article  CAS  Google Scholar 

  • Kalita E, Nath BK, Deb P, Agan F, Islam MR, Saikia K (2015) High quality fluorescent cellulose nanofibers from endemic rice husk: isolation and characterization. Carbohydr Polym 122:308–313. doi:10.1016/j.carbpol.2014.12.075

    Article  CAS  Google Scholar 

  • Kaushik A, Singh M (2011) Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization. Carbohydr Res 346:76–85. doi:10.1016/j.carres.2010.10.020

    Article  CAS  Google Scholar 

  • Khoshkava V, Kamal MR (2013) Effect of surface energy on dispersion and mechanical properties of polymer/nanocrystalline cellulose nanocomposites. Biomacromol 14:3155–3163. doi:10.1021/bm400784j

    Article  CAS  Google Scholar 

  • Lacerda PS, Barros-Timmons AM, Freire CS, Silvestre AJ, Neto CP (2013) Nanostructured composites obtained by ATRP sleeving of bacterial cellulose nanofibers with acrylate polymers. Biomacromol 14:2063–2073. doi:10.1021/bm400432b

    Article  CAS  Google Scholar 

  • Li S, Xiao M, Zheng A, Xiao H (2011) Cellulose microfibrils grafted with PBA via surface-initiated atom transfer radical polymerization for biocomposite reinforcement. Biomacromol 12:3305–3312. doi:10.1021/bm200797a

    Article  CAS  Google Scholar 

  • Littunen K, Hippi U, Johansson L-S, Österberg M, Tammelin T, Laine J, Seppälä J (2011) Free radical graft copolymerization of nanofibrillated cellulose with acrylic monomers. Carbohydr Polym 84:1039–1047. doi:10.1016/j.carbpol.2010.12.064

    Article  CAS  Google Scholar 

  • Missoum K, Belgacem MN, Barnes J-P, Brochier-Salon M-C, Bras J (2012) Nanofibrillated cellulose surface grafting in ionic liquid. Soft Matter 8:8338–8349. doi:10.1039/C2SM25691F

    Article  CAS  Google Scholar 

  • Missoum K, Belgacem MN, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials 6:1745. doi:10.3390/ma6051745

    Article  CAS  Google Scholar 

  • Mittal KL (Ed.) (1993) Contact angle, wettability and adhesion: Festschrift in Honor of Professor Robert J. Good (vol 1). VSP Intl Science

  • Mohanty AK, Misra M, Drzal LT (2005) Natural fibers, biopolymers, and biocomposites. CRC Press, Boca Raton

    Book  Google Scholar 

  • Mondal IH (2015) Nanocellulose, cellulose nanofibers, and cellulose nanocomposites: synthesis and applications. Nova Sci Publishers, New York (Incorporated)

    Google Scholar 

  • Navin Chand SCP, Singh RK (2012) Development and characterization of sisal nanofibre reinforced polyolefin composites. J Sci Res Rev 3:026–032

    Google Scholar 

  • O’Connell DW, Birkinshaw C, O’Dwyer TF (2006) A chelating cellulose adsorbent for the removal of Cu(II) from aqueous solutions. J Appl Polym Sci 99:2888–2897. doi:10.1002/app.22568

    Article  Google Scholar 

  • Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741–1747. doi:10.1002/app.1969.070130815

    Article  CAS  Google Scholar 

  • Pavia DL, Lampman GM, Kriz GS, Vyvyan JA (2008) Introduction to spectroscopy. Cengage Learning

  • Peng Y, Gardner DJ, Han Y, Cai Z, Tshabalala MA (2013) Influence of drying method on the surface energy of cellulose nanofibrils determined by inverse gas chromatography. J Colloid Interface Sci 405:85–95. doi:10.1016/j.jcis.2013.05.033

    Article  CAS  Google Scholar 

  • Rodrigues BVM, Heikkilä E, Frollini E, Fardim P (2014) Multi-technique surface characterization of bio-based films from sisal cellulose and its esters: a FE-SEM, μ-XPS and ToF-SIMS approach. Cellulose 21:1289–1303. doi:10.1007/s10570-014-0216-4

    Article  CAS  Google Scholar 

  • Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromol 10:1992–1996. doi:10.1021/bm900414t

    Article  CAS  Google Scholar 

  • Shen Q (2009) Surface properties of cellulose and cellulose derivatives: a review. Model Cellul Surface 1019:259–289. doi:10.1021/bk-2009-1019.ch012

    Article  CAS  Google Scholar 

  • Stana-Kleinschek K, Ribitsch V, Kreze T, Fras L (2002) Determination of the adsorption character of cellulose fibres using surface tension and surface charge. Mat Res Innov 6:13–18. doi:10.1007/s10019-002-0168-4

    Article  CAS  Google Scholar 

  • Steele DF, Moreton RC, Staniforth JN, Young PM, Tobyn MJ, Edge S (2008) Surface energy of microcrystalline cellulose determined by capillary intrusion and inverse gas chromatography. AAPS J 10:494–503. doi:10.1208/s12248-008-9057-0

    Article  Google Scholar 

  • Tokareva EN, Fardim P, Pranovich AV, Fagerholm HP, Daniel G, Holmbom B (2007) Imaging of wood tissue by ToF-SIMS: critical evaluation and development of sample preparation techniques. Appl Surface Sci 253:7569–7577. doi:10.1016/j.apsusc.2007.03.059

    Article  CAS  Google Scholar 

  • Van Oss CJ (2008) The properties of water and their role in colloidal and biological systems. Elsevier, Amsterdam

    Google Scholar 

  • Vollhardt KPC, Schore NE (2014) Organic chemistry: structure and function. Freeman, W. H

    Google Scholar 

  • Wu S (1982) Polymer interface and adhesion. Marcel Decker, New York

    Google Scholar 

  • Zafeiropoulos NE, Vickers PE, Baillie CA, Watts JF (2003) An experimental investigation of modified and unmodified flax fibres with XPS, ToF-SIMS and ATR-FTIR. J Mater Sci 38:3903–3914. doi:10.1023/a:1026133826672

    Article  CAS  Google Scholar 

  • Zahran MK (2006) Grafting of methacrylic acid and other vinyl monomers onto cotton fabric using Ce(IV) ion-cellulose thiocarbonate redox system. J Polym Res 13:65–71. doi:10.1007/s10965-005-9008-8

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Youssef Habibi from Department of Materials Research and Technology (MRT), Luxembourg Institute of Science and Technology (LIST), Luxembourg, for his scientific assistant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tayebeh Behzad.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 845 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, M., Behzad, T., Bagheri, R. et al. Topochemistry of cellulose nanofibers resulting from molecular and polymer grafting. Cellulose 24, 2139–2152 (2017). https://doi.org/10.1007/s10570-017-1254-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1254-5

Keywords

Navigation