Cellulose

, Volume 24, Issue 5, pp 2139–2152 | Cite as

Topochemistry of cellulose nanofibers resulting from molecular and polymer grafting

  • Mobina Ahmadi
  • Tayebeh Behzad
  • Rouhollah Bagheri
  • Mehran Ghiaci
  • Mohini Sain
Original Paper

Abstract

The aim of this study was to synthesize hydrophobic cellulose nanofibers (CNFs) using different chemical treatments including polymer and molecular grafting. For polymer grafting, immobilizing poly (butyl acrylate) (PBA) and poly (methyl methacrylate) (PMMA) on CNFs were implemented by the free radical method. Also, acetyl groups were introduced directly onto the CNFs surface by acetic anhydride for molecular grafting. The gravimetric and X-ray photoelectron spectroscopy analysis showed the high grafting density of PMMA on the surface of CNFs. AFM results revealed that molecular grafting created non-uniformity on the CNFs surface, as compared to polymer brushes. In addition, thermodynamic work of adhesion and work of cohesion for the modified CNFs were reduced in water and diiodomethane solvents. Dispersion factor was studied to indicate the dispersibility of CNFs in polar and non-polar media. Dispersion energy was reduced after modification as a result of decreasing interfacial tension and the dispersibility of modified CNFs was improved in diiodomethane.

Keywords

Cellulose nanofibers Hydrophobicity Polymer brush Molecular grafting Thermodynamic of surface 

Supplementary material

10570_2017_1254_MOESM1_ESM.docx (846 kb)
Supplementary material 1 (DOCX 845 kb)

References

  1. Abdul Khalil HPS, Bhat AH, IreanaYusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979. doi:10.1016/j.carbpol.2011.08.078 CrossRefGoogle Scholar
  2. Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues—Wheat straw and soy hulls. Bioresour Technol 99:1664–1671. doi:10.1016/j.biortech.2007.04.029 CrossRefGoogle Scholar
  3. Ashori A, Babaee M, Jonoobi M, Hamzeh Y (2014) Solvent-free acetylation of cellulose nanofibers for improving compatibility and dispersion. Carbohydr Polym 102:369–375. doi:10.1016/j.carbpol.2013.11.067 CrossRefGoogle Scholar
  4. Aveyard R, Haydon DA (1973) An introduction to the principles of surface chemistry. Cambridge University Press, CambridgeGoogle Scholar
  5. Baiardo M, Frisoni G, Scandola M, Licciardello A (2002) Surface chemical modification of natural cellulose fibers. J Appl Polym Sci 83:38–45. doi:10.1002/app.2229 CrossRefGoogle Scholar
  6. Bei Wang MS (2007) Dispersion of soybean stock-based nanofiber in a plastic matrix. Polym Int 56:538–546. doi:10.1002/pi.2167 CrossRefGoogle Scholar
  7. Bhushan B, Jung YC (2011) Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Progr Mater Sci 56:1–108. doi:10.1016/j.pmatsci.2010.04.003 CrossRefGoogle Scholar
  8. Brown EE, Laborie M-PG (2007) Bioengineering bacterial cellulose/poly(ethylene oxide). Nanocompos Biomacromol 8:3074–3081. doi:10.1021/bm700448x CrossRefGoogle Scholar
  9. Chen W, Yu H, Liu Y, Hai Y, Zhang M, Chen P (2011) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18:433–442. doi:10.1007/s10570-011-9497-z CrossRefGoogle Scholar
  10. De Menezes AJ, Longo E, Leite FL, Dufresne A (2014) Characterization of cellulose nanocrystals grafted with organic acid chloride of different sizes. J Renew Mat 2:306–313. doi:10.7569/JRM.2014.634121 Google Scholar
  11. De Menezes AJ, Siqueira G, Curvelo AAS, Dufresne A (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene. Nanocompos Polym 50:4552–4563. doi:10.1016/j.polymer.2009.07.038 CrossRefGoogle Scholar
  12. Dufresne A, ThomasS Pothan L (2013) Biopolymer nanocomposproces, properties and applications. Wiley, New YorkCrossRefGoogle Scholar
  13. Eriksson M, Notley SM, Wågberg L (2007) Cellulose thin films: degree of cellulose ordering and its influence on adhesion. Biomacromol 8:912–919. doi:10.1021/bm061164w CrossRefGoogle Scholar
  14. Espino-Pérez E, Domenek S, Belgacem N, Sillard C, Bras J (2014) Green process for chemical functionalization of nanocellulose with carboxylic acids. Biomacromol 15:4551–4560. doi:10.1021/bm5013458 CrossRefGoogle Scholar
  15. Extrand CW (2004) Criteria for ultralyophobic surfaces. Langmuir 20:5013–5018. doi:10.1021/la036481s CrossRefGoogle Scholar
  16. Favier V, Cavaille JY, Canova GR, Shrivastava SC (1997) Mechanical percolation in cellulose whisker nanocomposites. Polym Eng Sci 37:1732–1739. doi:10.1002/pen.11821 CrossRefGoogle Scholar
  17. Filpponen I, Kontturi E, Nummelin S, Rosilo H, Kolehmainen E, Ikkala O, Laine J (2012) Generic method for modular surface modification of cellulosic materials in aqueous medium by sequential “Click” reaction and adsorption. Biomacromol 13:736–742. doi:10.1021/bm201661k CrossRefGoogle Scholar
  18. Freire CSR, Silvestre AJD, PascoalNeto C, Gandini A, Fardim P, Holmbom B (2006) Surface characterization by XPS, contact angle measurements and ToF-SIMS of cellulose fibers partially esterified with fatty acids. J Colloid Interface Sci 301:205–209. doi:10.1016/j.jcis.2006.04.074 CrossRefGoogle Scholar
  19. Gardner DJ, Oporto GS, Mills R, Samir MASA (2008) Adhesion and surface issues in cellulose and nanocellulose. J Adhes Sci Technol 22:545–567. doi:10.1163/156856108X295509 CrossRefGoogle Scholar
  20. Hu W, Chen S, Yang J, Li Z, Wang H (2014) Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydr Polym 101:1043–1060. doi:10.1016/j.carbpol.2013.09.102 CrossRefGoogle Scholar
  21. Ifuku S, Nogi M, Abe K, Handa K, Nakatsubo F, Yano H (2007) Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromol 8:1973–1978. doi:10.1021/bm070113b CrossRefGoogle Scholar
  22. Islam MT, Alam MM, Zoccola M (2013) Review on modification of nanocellullose for application in composites. Int J Innov Res Sci Eng Tech 2:5444–5451Google Scholar
  23. Jonoobi M, Harun J, Mathew AP, Hussein MZB, Oksman K (2010) Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose 17:299–307. doi:10.1007/s10570-009-9387-9 CrossRefGoogle Scholar
  24. Kalita E, Nath BK, Deb P, Agan F, Islam MR, Saikia K (2015) High quality fluorescent cellulose nanofibers from endemic rice husk: isolation and characterization. Carbohydr Polym 122:308–313. doi:10.1016/j.carbpol.2014.12.075 CrossRefGoogle Scholar
  25. Kaushik A, Singh M (2011) Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization. Carbohydr Res 346:76–85. doi:10.1016/j.carres.2010.10.020 CrossRefGoogle Scholar
  26. Khoshkava V, Kamal MR (2013) Effect of surface energy on dispersion and mechanical properties of polymer/nanocrystalline cellulose nanocomposites. Biomacromol 14:3155–3163. doi:10.1021/bm400784j CrossRefGoogle Scholar
  27. Lacerda PS, Barros-Timmons AM, Freire CS, Silvestre AJ, Neto CP (2013) Nanostructured composites obtained by ATRP sleeving of bacterial cellulose nanofibers with acrylate polymers. Biomacromol 14:2063–2073. doi:10.1021/bm400432b CrossRefGoogle Scholar
  28. Li S, Xiao M, Zheng A, Xiao H (2011) Cellulose microfibrils grafted with PBA via surface-initiated atom transfer radical polymerization for biocomposite reinforcement. Biomacromol 12:3305–3312. doi:10.1021/bm200797a CrossRefGoogle Scholar
  29. Littunen K, Hippi U, Johansson L-S, Österberg M, Tammelin T, Laine J, Seppälä J (2011) Free radical graft copolymerization of nanofibrillated cellulose with acrylic monomers. Carbohydr Polym 84:1039–1047. doi:10.1016/j.carbpol.2010.12.064 CrossRefGoogle Scholar
  30. Missoum K, Belgacem MN, Barnes J-P, Brochier-Salon M-C, Bras J (2012) Nanofibrillated cellulose surface grafting in ionic liquid. Soft Matter 8:8338–8349. doi:10.1039/C2SM25691F CrossRefGoogle Scholar
  31. Missoum K, Belgacem MN, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials 6:1745. doi:10.3390/ma6051745 CrossRefGoogle Scholar
  32. Mittal KL (Ed.) (1993) Contact angle, wettability and adhesion: Festschrift in Honor of Professor Robert J. Good (vol 1). VSP Intl ScienceGoogle Scholar
  33. Mohanty AK, Misra M, Drzal LT (2005) Natural fibers, biopolymers, and biocomposites. CRC Press, Boca RatonCrossRefGoogle Scholar
  34. Mondal IH (2015) Nanocellulose, cellulose nanofibers, and cellulose nanocomposites: synthesis and applications. Nova Sci Publishers, New York (Incorporated) Google Scholar
  35. Navin Chand SCP, Singh RK (2012) Development and characterization of sisal nanofibre reinforced polyolefin composites. J Sci Res Rev 3:026–032Google Scholar
  36. O’Connell DW, Birkinshaw C, O’Dwyer TF (2006) A chelating cellulose adsorbent for the removal of Cu(II) from aqueous solutions. J Appl Polym Sci 99:2888–2897. doi:10.1002/app.22568 CrossRefGoogle Scholar
  37. Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741–1747. doi:10.1002/app.1969.070130815 CrossRefGoogle Scholar
  38. Pavia DL, Lampman GM, Kriz GS, Vyvyan JA (2008) Introduction to spectroscopy. Cengage LearningGoogle Scholar
  39. Peng Y, Gardner DJ, Han Y, Cai Z, Tshabalala MA (2013) Influence of drying method on the surface energy of cellulose nanofibrils determined by inverse gas chromatography. J Colloid Interface Sci 405:85–95. doi:10.1016/j.jcis.2013.05.033 CrossRefGoogle Scholar
  40. Rodrigues BVM, Heikkilä E, Frollini E, Fardim P (2014) Multi-technique surface characterization of bio-based films from sisal cellulose and its esters: a FE-SEM, μ-XPS and ToF-SIMS approach. Cellulose 21:1289–1303. doi:10.1007/s10570-014-0216-4 CrossRefGoogle Scholar
  41. Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromol 10:1992–1996. doi:10.1021/bm900414t CrossRefGoogle Scholar
  42. Shen Q (2009) Surface properties of cellulose and cellulose derivatives: a review. Model Cellul Surface 1019:259–289. doi:10.1021/bk-2009-1019.ch012 CrossRefGoogle Scholar
  43. Stana-Kleinschek K, Ribitsch V, Kreze T, Fras L (2002) Determination of the adsorption character of cellulose fibres using surface tension and surface charge. Mat Res Innov 6:13–18. doi:10.1007/s10019-002-0168-4 CrossRefGoogle Scholar
  44. Steele DF, Moreton RC, Staniforth JN, Young PM, Tobyn MJ, Edge S (2008) Surface energy of microcrystalline cellulose determined by capillary intrusion and inverse gas chromatography. AAPS J 10:494–503. doi:10.1208/s12248-008-9057-0 CrossRefGoogle Scholar
  45. Tokareva EN, Fardim P, Pranovich AV, Fagerholm HP, Daniel G, Holmbom B (2007) Imaging of wood tissue by ToF-SIMS: critical evaluation and development of sample preparation techniques. Appl Surface Sci 253:7569–7577. doi:10.1016/j.apsusc.2007.03.059 CrossRefGoogle Scholar
  46. Van Oss CJ (2008) The properties of water and their role in colloidal and biological systems. Elsevier, AmsterdamGoogle Scholar
  47. Vollhardt KPC, Schore NE (2014) Organic chemistry: structure and function. Freeman, W. HGoogle Scholar
  48. Wu S (1982) Polymer interface and adhesion. Marcel Decker, New YorkGoogle Scholar
  49. Zafeiropoulos NE, Vickers PE, Baillie CA, Watts JF (2003) An experimental investigation of modified and unmodified flax fibres with XPS, ToF-SIMS and ATR-FTIR. J Mater Sci 38:3903–3914. doi:10.1023/a:1026133826672 CrossRefGoogle Scholar
  50. Zahran MK (2006) Grafting of methacrylic acid and other vinyl monomers onto cotton fabric using Ce(IV) ion-cellulose thiocarbonate redox system. J Polym Res 13:65–71. doi:10.1007/s10965-005-9008-8 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht  2017

Authors and Affiliations

  • Mobina Ahmadi
    • 1
    • 2
  • Tayebeh Behzad
    • 1
  • Rouhollah Bagheri
    • 1
  • Mehran Ghiaci
    • 2
  • Mohini Sain
    • 3
  1. 1.Department of Chemical EngineeringIsfahan University of TechnologyIsfahanIran
  2. 2.Department of ChemicalIsfahan University of TechnologyIsfahanIran
  3. 3.Department of Chemical EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations