Skip to main content
Log in

Novel cellulose esters derived from the levopimaric acid-maleic anhydride adduct: synthesis, characterization, and properties

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Synthesis of maleated pimaric acid (MPA) cellulose esters is first reported in this work. Cellulose esterification was performed by reacting microcrystalline cellulose with monoacid chloride of MPA (MPA-Cl) in presence of pyridine as catalyst and reaction medium. The syntheses were started in a heterogeneous solid–liquid reaction medium, but as the reaction advanced, the reaction mass turned into a homogeneous solution. The effects of MPA-Cl/anhydroglucose unit molar ratio, reaction temperature, and reaction duration on the yield and degree of substitution (DS) of cellulose esters (CEs) were investigated. CEs with DS ranging from 2.6 to 2.8 were achieved at molar ratios of 5.5–6.0 after 12–16 h at 118 °C. The purified products were characterized by elemental analysis, IR and 13C-NMR spectroscopy, and thermogravimetric analysis. CEs are soluble or partially soluble in usual organic solvents, depending on DS. Transparent films were prepared using CE-cyclohexanone solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abo-Elenin OM, El-Saeed AM, El-Sockari MA (2014) Synthesis of new polyurethane coating based on rosin for corrosion protection of petroleum industries equipment. Int J Eng Res Appl 4:148–155

    Google Scholar 

  • Arai K, Satoh H (1992) Liquid crystalline phase-formation behavior of cellulose cinnamate. J Appl Polym Sci 45:387–390. doi:10.1002/app.1992.070450302

    Article  CAS  Google Scholar 

  • Atta AM, Mansour R, Abdou MI, El-Sayed AM (2005) Synthesis and characterization of tetra-functional epoxy resins from rosin. J Polym Res 12:127–138. doi:10.1007/s10965-004-2936-x

    Article  CAS  Google Scholar 

  • Bacher A (2002) IR handout-UCLA chemistry and biochemistry-infrared spectroscopy. www.chem.edu/~bacher/spectroscopy/IR1.html

  • Bernoulli AL, Stauffer H (1940) Darstellung und einige physikalische Eigenschaften der 1-Chlor-2,3,4,6,-tetra-p-toluolsulfonyl-glucose. Helv Chim Acta 23:615–626. doi:10.1002/hlca.19400230182

    Article  CAS  Google Scholar 

  • Bicu I, Mustata F (2007) Polymers from a levopimaric acid–acrylic acid Diels–Alder adduct: synthesis and characterization. J Polym Sci A Polym Chem 45:5979–5990. doi:10.1002/pola.22352

    Article  CAS  Google Scholar 

  • Chen J, Zhang JM, Chen WW, Feng Y, Zhang J (2013) Homogeneous synthesis of cellulose naphthoate in an ionic liquid. Acta Polym Sin 10:1235–1240. doi:10.3724/SP.J.1105.2013.13168

    Google Scholar 

  • Crepy L, Chaveriat L, Banoub J, Martin P, Joly N (2009) Synthesis of cellulose fatty esters as plastics—influence of the degree of substitution and the fatty chain length on mechanical properties. ChemSusChem 2:165–170. doi:10.1002/cssc.200800171

    Article  CAS  Google Scholar 

  • Cross CF, Bevan EJ (1907) Researches on cellulose, 1895–1900. Chapt. Cellulose benzoates, 2nd edn. Longmans, Green & Co, London, pp 35–41

    Google Scholar 

  • Edgar KJ (2004) Cellulose esters, organic. In: Kroschwitz JI (ed) Encyclopedia of polymer science and technology, vol 9, 3rd edn. Wiley, New York, pp 131–133. doi:10.1002/0471440264.pst045

  • Edgar KJ, Buchanan CM, Debenham JS, Rundquist PA, Seiler BD, Shelton MC, Tindall D (2001) Advances in cellulose ester performance and application. Prog Polym Sci 26:1605–1688. doi:10.1016/S0079-6700(01)00027-2

    Article  CAS  Google Scholar 

  • Einfeldt L, Gunther W, Klemm D, Heublein B (2005) Peracetylated cellulose: end group modification and structural analysis by means of 1H-NMR spectroscopy. Cellulose 12:15–24

    Article  CAS  Google Scholar 

  • El Seoud OA, Heinze T (2005) Organic esters of cellulose: new perspectives for old polymers. Adv Polym Sci 186:103–149. doi:10.1007/b136818

    Article  Google Scholar 

  • El-Ghazawy RA, El-Shafey HI, El-Saeed MA, Abdel-Raheim A-RM, El-Sockhary MA (2014) Liquid crystal bio-based epoxy coating with enhanced performance. Int J Eng Res Appl 4:90–96

    Google Scholar 

  • El-Ghazawy RA, El-Saeed MA, El-Shafey HI, Abdel-Raheim A-RM, El-Sockhary MA (2015) Rosin based epoxy coatings: Synthesis, identification, and characterization. Eur Polym J 69:403–415. doi:10.1016/j.eurpolymj.2015.06.025

    Article  CAS  Google Scholar 

  • Freire CSR, Silvestre AJD, Pascoal Neto C, Belgacem MN, Gandini A (2006) Controlled heterogeneous modification of cellulose fibers with fatty acids: effect of reaction conditions on the extent of esterification and fiber properties. J Appl Polym Sci 100:1093–1102. doi:10.1002/app.23454

    Article  CAS  Google Scholar 

  • Genung LB, Mallatt RC (1941) Analysis of cellulose derivatives. Determination of total combined acyl in cellulose organic esters. Industrial and Engineering Chemistry

  • Hasani MM, Westman G (2007) New coupling reagents for homogeneous esterification of cellulose. Cellulose 14:347–356. doi:10.1007/s10570-007-9107-2

    Article  CAS  Google Scholar 

  • Heinze T, Petzold-Welcke K (2012) Recent advances in cellulose chemistry. In: Habibi Y, Lucia LA (eds) Polysaccharide building blocks: a sustainable approach to the development of renewable biomaterials. Wiley, Hoboken, pp 2–6

    Google Scholar 

  • Hon DNS (1996) Chemical modification of lignocellulosic materials. Marcel Dekker, New York, pp 97–129

    Google Scholar 

  • Hussain MA (2004) Alternative routes of polysaccharide acylation: synthesis, structural analysis, properties. Dissertation, Friedrich Schiller University of Jena

  • Hussain MA (2008) Unconventional synthesis and characterization of novel abietic acid esters of hydroxipropylcellulose as potential macromolecular prodrugs. J Polym Sci Pol Chem 46:747–752. doi:10.1002/pola.22461

    Article  CAS  Google Scholar 

  • Hussain MA, Heinze T (2008) Unconventional synthesis of pullulan abietates. Polym Bull 60:775–783. doi:10.1007/s00289-008-0918-6

    Article  CAS  Google Scholar 

  • Kawamoto H, Kawanishi H, Okazaki M, Sata H (2005) Cellulose ester of aromatic carboxylic acid. EP 1,215,216 B1

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393. doi:10.1002/anie.200460587

    Article  CAS  Google Scholar 

  • Kruk C, de Vries NK, van der Velden G (1990) Two-dimensional INADEQUATE 13CNMR studies of maleopimaric acid, the Diels-Alder adduct of levopimaric acid and maleic anhydride, and of abietic acid. Magn Reson Chem 28:443–447

    Article  CAS  Google Scholar 

  • Levey HA (1920) Cellulose phthalate: Its preparation and properties. J Ind Eng Chem 12:743–744. doi:10.1021/ie50128a012

    Article  CAS  Google Scholar 

  • Li J, Zhang L-P, Peng F, Bian J, Yuan T-Q, Xu F, Sun R-C (2009) Microwave-assisted solvent-free acetylation of cellulose with acetic anhydride in the presence of iodine as a catalyst. Molecules 14:3551–3566. doi:10.3390/molecules14093551

    Article  CAS  Google Scholar 

  • Li J, Rao X, Shao S, Gao Y, Song J (2012) Synthesis and antibacterial activity of amide derivatives from acrylopimaric acid. Bioresources 7:1961–1971. doi:10.15376/biores.7.2.1951-1971

    CAS  Google Scholar 

  • Liebert TF, Heinze T (2005) Tailored cellulose esters: synthesis and structure determination. Biomacromolecules 6:333–340. doi:10.1021/bm049532o

    Article  CAS  Google Scholar 

  • Liu X, Xin W, Zhang J (2009) Rosin-based acid anhydrides as alternatives to petrochemical curing agents. Green Chem 11:1018–1025. doi:10.1039/b903955d

    Article  CAS  Google Scholar 

  • Liu X, Xin W, Zhang J (2010) Rosin-derived imide-diacids as epoxy curing agents for enhanced performance. Bioresour Technol 101:2520–2524. doi:10.1016/j.biortech.2009.11.028

    Article  CAS  Google Scholar 

  • Maim CJ, Mench JW, Kendall DL, Hiatt GD (1951) Aliphatic acid esters of cellulose. Preparation by acid-chloride-pyridine procedure. Ind Eng Chem 43:684–688. doi:10.1021/ie50495a033

    Article  Google Scholar 

  • Maity S, Ray SS, Kundu AK (1989) Rosin: a renewable resource for polymers and polymer chemicals. Prog Polym Sci 14:297–338. doi:10.1016/0079-6700(89)90005-1

    Article  Google Scholar 

  • Minsk LM, Smith JG, Van Densen WP, Wright JF (1959) Photosensitive polymers. I. Cinnamate estes of poly (vinyl alcohol) and cellulose. J Appl Polym Sci 2:302–307. doi:10.1002/app.1959.070020607

    Article  CAS  Google Scholar 

  • Ost H, Klein F (1913) Die Benzoylester der Cellulose. Angew Chem 26:437–440. doi:10.1002/ange.19130266102

    Article  CAS  Google Scholar 

  • Pandiarajan S, Umadevi M, Rajaram RK, Ramakrishnan V (2005) Infrared and Raman spectroscopic studies of l-valine L-valinium perchlorate monohydrate. Spectrochim Acta A 62:630–636. doi:10.1016/j.saa.2005.02.008

    Article  CAS  Google Scholar 

  • Rahn K, Diamantoglou M, Klemm D, Berghmans H, Heinze T (1999) Homogeneous synthesis of cellulose p-toluenesulfonates in N,N-dimethylacetamide/LiCl solvent system. Angew Makromol Chem 238:143–163. doi:10.1002/apmc.1996.052380113

    Article  Google Scholar 

  • Schmidt S, Liebert T, Heinze T (2014) Synthesis of soluble cellulose tosylates in an eco-friendly medium. Green Chem 16:1941–1946. doi:10.1039/C3GC41994K

    Article  CAS  Google Scholar 

  • Schönbein CF (1846) Lettre de M. Schoenbein a M. Dumas sur le cotton fulminant. Comptes Rendus 23:678–679

    Google Scholar 

  • Schützenberger P (1865) Action de l’acide acétique anhydre sur la cellulose, l’amidon, les sucres, la mannite et ses congeners, les glucosides et certaines matieres colorants vegetales. Comptes Rendus 61:485–486

    Google Scholar 

  • SDBS (Integrated Spectral Data Base System for Organic Compounds) Catalogue. http://www.aist.go.jp/RIODB/SDBS/cgi-index.cgi. Accessed 26 Oct 2016

  • Vaca-Garcia C, Thiebaud S, Borredon ME, Gozzelino G (1998) Cellulose esterification with fatty acids and acetic anhydride in lithium chloride/N,N-dimethylacetamide. J Am Oil Chem Soc 75:315–319. doi:10.1007/s11746-998-0047-2

    Article  CAS  Google Scholar 

  • Vaca-Garcia C, Borredon ME, Gaseta A (2001) Determination of the degree of substitution (DS) of mixed cellulose esters by elemental analysis. Cellulose 8:225–231. doi:10.1023/A:1013133921626

    Article  CAS  Google Scholar 

  • Vaca-Garcia C, Gozzelino G, Glasser WG, Borredon ME (2003) Dynamic mechanical thermal analysis transitions of partially and fully substituted cellulose fatty esters. J Polym Sci Pol Phys 41:281–288. doi:10.1002/polb.10378

    Article  CAS  Google Scholar 

  • Vogt N, Demaison J, Rudolph HD (2011) Equilibrium structure and spectroscopic constants of maleic anhydride. Struct Chem 22:337–343. doi:10.1007/s11224-010-9714-7

    Article  CAS  Google Scholar 

  • Wang P, Tao BY (1995) Synthesis of cellulose-fatty acid esters for use as biodegradable plastics. J Environ Polym Degrad 3:115–119. doi:10.1007/BF02067487

    Article  CAS  Google Scholar 

  • Wang J, Yu J, Liu Y, Chen Y, Wang C, Tang C, Chu F (2013) Synthesis and characterization of a novel rosin-based monomer: free radical polymerization and epoxy curing. Green Mater 1:105–113. doi:10.1680/gmat.12.00013

    Article  CAS  Google Scholar 

  • Wei Y, Cheng F, Hou G (2007) Synthesis and properties of fatty acid esters of cellulose. J Sci Ind Res 66:1019–1024

    CAS  Google Scholar 

  • Wiyono S, Tachibana S, Tinambunan D (2007) Reaction of abietic acid with maleic anhydride and attempts to find the fundamental component of fortified rosin. Pak J Biol Sci 10:1588–1595

    Article  CAS  Google Scholar 

  • Xu D, Li B, Tate C, Edgar KJ (2011) Studies on regioselective acylation of cellulose with bulky acid chlorides. Cellulose 18:405–419. doi:10.1007/s10570-010-9476-9

    Article  CAS  Google Scholar 

  • Zhang J, Wu J, Cao Y, Sang S, Zhang J, He J (2009) Synthesis of cellulose benzoates under homogeneous conditions in an ionic liquid. Cellulose 16:299–308. doi:10.1007/s10570-008-9260-2

    Article  CAS  Google Scholar 

  • Zheng X, Gandour RD, Edgar KJ (2013) TBAF-catalyzed deacylation of cellulose esters: reaction scope and influence of reaction parameters. Carbohydr Polym 98:692–698. doi:10.1016/j.carbpol.2013.06.010

    Article  CAS  Google Scholar 

  • Zhou Y, Min D-Y, Wang Z, Yang Y, Kuga S (2014) Cellulose esterification with octanoyl chloride and its application to films and aerogels. Bioresources 9:3901–3908

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioan Bicu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bicu, I., Mustata, F. Novel cellulose esters derived from the levopimaric acid-maleic anhydride adduct: synthesis, characterization, and properties. Cellulose 24, 2029–2048 (2017). https://doi.org/10.1007/s10570-017-1243-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1243-8

Keywords