Skip to main content

Coating cellulose nanocrystals on polypropylene and its film adhesion and mechanical properties

Abstract

In this work, we investigated conditions to deposit cellulose nanocrystal (CNC) films onto polypropylene (PP) by spin coating, and studied the adhesion, mechanical property, and oxygen permeability properties of the CNC-coated PP films. It was found that CNC films maintained proper adhesion on UV ozone-treated PP even when deformed, but cracked when bent beyond a critical radius of curvature or scratched with excessive force. We also exposed CNC films to various forms of mechanical strain in order to determine the CNC films’ strength and durability as a coating under different humidity conditions, and found that the film’s scratch resistance increased with longer exposure to humidity. Additional oxygen permeability tests showed that a thin CNC coating film with a thickness of less than 1 μm on UV ozone-treated PP reduced oxygen permeation by 39%. We conclude that CNC films can be coated simply on hydrophobic PP, and the enhanced gas barrier properties of CNC-coated PP could find application in the food packaging industry.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Aulin C, Johansson E, Wågberg L, Lindström T (2010) Self-organized films from cellulose I nanofibrils using the layer-by-layer technique. Biomacromolecules 11:872–882

    CAS  Article  Google Scholar 

  • Batmaz R, Mohammed N, Berry RM, Tam KC (2014) Cellulose nanocrystals as promising adsorbents for the removal of cationic dyes. Cellulose 21:1655–1665

    CAS  Article  Google Scholar 

  • Beck S, Bouchard J, Berry R (2011) Controlling the reflection wavelength of iridescent solid films of nanocrystalline cellulose. Biomacromolecules 12:167–172

    CAS  Article  Google Scholar 

  • Cao X, Dong H, Li CM (2007) New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Biomacromolecules 8:899–904

    CAS  Article  Google Scholar 

  • Cao X, Habibi Y, Lucia LA (2009) One-pot polymerization, surface grafting, and processing of waterborne polyurethane-cellulose nanocrystal nanocomposites. J Mater Chem 19:7137–7145

    CAS  Article  Google Scholar 

  • Cerclier C, Guyomard-lack A, Moreau C et al (2011) Coloured semi-reflective thin films for biomass-hydrolyzing enzyme detection. Adv Mater 23:3791–3795

    CAS  Google Scholar 

  • Chau M, De France KJ, Kopera B et al (2016) Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chem Mater 28:3406–3415

    CAS  Article  Google Scholar 

  • Chen L, Lai C, Marchewka R et al (2016) Use of CdS quantum dot-functionalized cellulose nanocrystal films for anti-counterfeiting applications. Nanoscale 8:13288–13296

    CAS  Article  Google Scholar 

  • Cranston ED, Gray DG (2008) Birefringence in spin-coated films containing cellulose nanocrystals. Colloids Surf A Physicochem Eng Asp 325:44–51

    CAS  Article  Google Scholar 

  • Dong XM, Kimura T, Revol J-F, Gray DG (1996) Effects of ionic strength on the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12:2076–2082

    CAS  Article  Google Scholar 

  • Fortunati E, Armentano I, Zhou Q et al (2012) Multifunctional bionanocomposite films of poly (lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydr Polym 87:1596–1605

    CAS  Article  Google Scholar 

  • Grosu G, Andrzejewski L, Veilleux G, Ross GG (2004) Relation between the size of fog droplets and their contact angles with CR39. J Phys D Appl Phys 37:3350–3355

    CAS  Article  Google Scholar 

  • Habibi Y, Heim T, Douillard R (2008) AC electric field-assisted assembly and alignment of cellulose nanocrystals. J Polym Sci 46:1430–1436

    CAS  Article  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    CAS  Article  Google Scholar 

  • Hoeger I, Rojas OJ, Efimenko K et al (2011) Ultrathin film coatings of aligned cellulose nanocrystals from a convective-shear assembly system and their surface mechanical properties. Soft Matter 7:1957–1967

    CAS  Article  Google Scholar 

  • Hu Z, Marway HS, Kasem H et al (2016) Dried and redispersible cellulose nanocrystal Pickering emulsions. ACS Macro Lett 5:185–189

    CAS  Article  Google Scholar 

  • Kaushik M, Moores A (2016) Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem 18:622–637

    CAS  Article  Google Scholar 

  • Kelly JA, Shukaliak AM, Cheung CCY et al (2013) Responsive photonic hydrogels based on nanocrystalline cellulose. Angew Chem Int Ed 52:8912–8916

    CAS  Article  Google Scholar 

  • Lee S, Lee K, Hong J (2003) Evidence for spin coating electrostatic self-assembly of polyelectrolytes. Langmuir 19:7592–7596

    CAS  Article  Google Scholar 

  • Lefebvre J, Gray DG (2005) AFM of adsorbed polyelectrolytes on cellulose I surfaces spin-coated on silicon wafers. Cellulose 12:127–134

    CAS  Article  Google Scholar 

  • Li F, Biagioni P, Bollani M et al (2013a) Multi-functional coating of cellulose nanocrystals for flexible packaging applications. Cellulose 20:2491–2504

    CAS  Article  Google Scholar 

  • Li F, Biagioni P, Finazzi M et al (2013b) Tunable green oxygen barrier through layer-by-layer self-assembly of chitosan and cellulose nanocrystals. Carbohydr Polym 92:2128–2134

    CAS  Article  Google Scholar 

  • Liu H, Liu D, Yao F, Wu Q (2010) Bioresource technology fabrication and properties of transparent polymethylmethacrylate/cellulose nanocrystals composites. Bioresour Technol 101:5685–5692

    CAS  Article  Google Scholar 

  • Lu J, Askeland P, Drzal LT (2008) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer (Guildf) 49:1285–1296

    CAS  Article  Google Scholar 

  • Mathieson I, Bradley RH (1996) Improved adhesion to polymers by UV/ozone surface oxidation. Int J Adhes Adhes 16:29–31

    CAS  Article  Google Scholar 

  • Miller DJ, Araújo PA, Correia PB et al (2012) Short-term adhesion and long-term biofouling testing of polydopamine and poly(ethylene glycol) surface modifications of membranes and feed spacers for biofouling control. Water Res 46:3737–3753

    CAS  Article  Google Scholar 

  • Morent R, De Geyter N, Leys C et al (2008) Comparison between XPS- and FTIR-analysis of plasma-treated polypropylene film surfaces. Surf Interface Anal 40:597–600

    CAS  Article  Google Scholar 

  • Nie H-Y, Walzak MJ, Berno B, McIntyre NS (1999) Atomic force microscopy study of polypropylene surfaces treated by UV and ozone exposure: modification of morphology and adhesion force. Appl Surf Sci 144–145:627–632

    Article  Google Scholar 

  • Park JH, Noh J, Schütz C et al (2014) Macroscopic control of helix orientation in films dried from cholesteric liquid-crystalline cellulose nanocrystal suspensions. ChemPhysChem 15:1477–1484

    CAS  Article  Google Scholar 

  • Peng BL, Dhar N, Liu HL, Tam KC (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 89:1191–1206

    CAS  Article  Google Scholar 

  • Peresin MS, Habibi Y, Zoppe JO et al (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromolecules 11:674–681

    CAS  Article  Google Scholar 

  • Podsiadlo P, Sui L, Elkasabi Y et al (2007) Layer-by-layer assembled films of cellulose nanowires with antireflective properties. Langmuir 23:7901–7906

    CAS  Article  Google Scholar 

  • Rabello MS, White JR (1997) The role of physical structure and morphology in the photodegradation behaviour of polypropylene. Polym Degrad Stab 56:55–73

    CAS  Article  Google Scholar 

  • Samir MASA, Alloin F, Gorecki W et al (2004a) Nanocomposite polymer electrolytes based on poly (oxyethylene) and cellulose nanocrystals. J Phys Chem B 108:10845–10852

    CAS  Article  Google Scholar 

  • Samir MASA, Alloin F, Sanchez J, Dufresne A (2004b) Cellulose nanocrystals reinforced poly (oxyethylene). Polymer (Guildf) 45:4149–4157

    Article  Google Scholar 

  • Shopsowitz KE, Qi H, Hamad WY, Maclachlan MJ (2010) Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 468:422–425

    CAS  Article  Google Scholar 

  • Sugiyamaj J, Chanzy H, Maret G (1992) Orientation of cellulose microcrystals by strong magnetic fields. Macromolecules 25:4232–4234

    Article  Google Scholar 

  • Sunasee R, Hemraz UD, Ckless K (2016) Cellulose nanocrystals: a versatile nanoplatform for emerging biomedical applications applications. Expert Opin Drug Deliv 5247:1744–7593

    Google Scholar 

  • Tang J, Fu M, Lee X et al (2014) Dual responsive Pickering emulsion stabilized by poly[2-(dimethylamino)ethyl methacrylate] grafted cellulose nanocrystals. Biomacromolecules 15:3052–3060

    CAS  Article  Google Scholar 

  • Tran CTH, Craggs M, Smith LM et al (2016) Covalent linker-free immobilization of conjugatable oligonucleotides on polypropylene surfaces. RSC Adv 6:83328–83336

    CAS  Article  Google Scholar 

  • Yang FK, Zhang W, Han Y et al (2012) “Contact” of nanoscale stiff films. Langmuir 28:9562–9572

    CAS  Article  Google Scholar 

  • Zhang W, Yang FK, Han Y et al (2013) Surface and tribological behaviors of the bioinspired polydopamine thin films under dry and wet conditions. Biomacromolecules 14:394–405

    CAS  Article  Google Scholar 

  • Zhu H, Yang X, Cranston ED, Zhu S (2016) Flexible and porous nanocellulose aerogels with high loadings of metal–organic-framework particles for separations applications. Adv Mater 28:7652–7657

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by an Engage Project from the Natural Sciences and Engineering Research Council of Canada (NSERC). We thank Prof. Xianshe Feng and his student Kai Wu for assistance with the permeability tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boxin Zhao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2217 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

d’Eon, J., Zhang, W., Chen, L. et al. Coating cellulose nanocrystals on polypropylene and its film adhesion and mechanical properties. Cellulose 24, 1877–1888 (2017). https://doi.org/10.1007/s10570-017-1222-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1222-0

Keywords

  • Cellulose nanocrystals (CNC) thin film
  • Polypropylene
  • Coating
  • Mechanical strength
  • Adhesion
  • Oxygen barrier