Advertisement

Cellulose

, Volume 24, Issue 3, pp 1445–1454 | Cite as

Fabrication, characterization and evaluation of bacterial cellulose-based capsule shells for oral drug delivery

  • Hanif Ullah
  • Munair Badshah
  • Ermei Mäkilä
  • Jarno Salonen
  • Mohammad-Ali Shahbazi
  • Hélder A. SantosEmail author
  • Taous KhanEmail author
Original Paper

Abstract

Bacterial cellulose (BC) was investigated for the first time for the preparation of capsule shells for immediate and sustained release of drugs. The prepared capsule shells were characterized using X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. The BC capsule shells were studied for drug release using an USP type-I dissolution apparatus. Irrespective of the drying method and the thickness of the BC sheet, the capsule shells displayed an immediate drug release profile. Moreover, the addition of release-retardant cellulosic polymers sustained the drug release having first-order kinetics for hydroxypropylmethylcellulose and carboxymethyl cellulose sodium with R 2 values of 0.9995 and 0.9954, respectively. Furthermore, these capsules shells remained buoyant in 0.1 N HCl (pH 1.2) solution up to 12 h. This study showed that BC is a promising alternative to gelatin capsules with both immediate and sustained drug release properties depending upon the compositions of the encapsulated materials.

Keywords

Bacterial cellulose Capsule Dissolution profiles Membrane controlled matrix 

Notes

Acknowledgments

Hanif Ullah would like to thank the COMSATS Institute of Information Technology, Pakistan, for the funded project and HEC, Pakistan for the scholarship. Dr. Hélder A. Santos acknowledges financial support from the Academy of Finland (decision nos. 252215 and 281300), the University of Helsinki Research Funds, the Biocentrum Helsinki and the European Research Council under the European Union’s Seventh Framework Programme (FP/2007–2013, grant no. 310892).

References

  1. Ahmad N, Amin MCIM, Mahali SM, Ismail I, Chuang VTG (2014) Biocompatible and mucoadhesive bacterial cellulose-g-poly (acrylic acid) hydrogels for oral protein delivery. Mol Pharm 11(11):4130–4142CrossRefGoogle Scholar
  2. Bogner RH, Szweijkowski JP, Houston AP (2000) Release of morphine sulfate from compounded slow-release capsules: the effect of formulation on release. Int J Pharm Compd 5(5):401–405Google Scholar
  3. Bravo SA, Lamas MC, Salomón CJ (2002) In-vitro studies of diclofenac sodium controlled-release from biopolymeric hydrophilic matrices. J Pharm Pharm Sci 5(3):213–219Google Scholar
  4. Cai H, Sharma S, Liu W, Mu W, Liu W, Zhang X, Deng Y (2014) Aerogel microspheres from natural cellulose nanofibrils and their application as cell culture scaffold. Biomacromolecules 15(7):2540–2547CrossRefGoogle Scholar
  5. Ciolacu D, Ciolacu F, Popa VI (2011) Amorphous cellulose—structure and characterization. Cell Chem Technol 45(1):13–21Google Scholar
  6. Clasen C, Sultanova B, Wilhelms T, Heisig P, Kulicke WM (2006) Effects of different drying processes on the material properties of bacterial cellulose membranes. Macromol Symp 244:48–58CrossRefGoogle Scholar
  7. Costa P, Lobo JMS (2001) Modeling and comparison of dissolution profiles. Eur J Pharm Sci 2:123–133CrossRefGoogle Scholar
  8. Czaja W, Krystynowicz A, Bielecki S, Brown RM Jr (2006) Microbial cellulose-the natural power to heal wounds. Biomaterials 27(2):145–151CrossRefGoogle Scholar
  9. Emami J, Tavakoli N, Movahedian A (2004) Formulation of sustained-release lithium carbonate matrix tablets: influence of hydrophilic materials on the release rate and in vitro-in vivo evaluation. J Pharm Pharm Sci 7(3):338–344Google Scholar
  10. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRefGoogle Scholar
  11. Halib N, Amin M, Ahmad I (2012) Physicochemical properties and characterization of nata de coco from local food industries as a source of cellulose. Sains Malays 41(2):205–211Google Scholar
  12. Hardy I, Cook W, Melia C (2006) Compression and compaction properties of plasticised high molecular weight hydroxypropylmethylcellulose (HPMC) as a hydrophilic matrix carrier. Int J Pharm 311(1):26–32CrossRefGoogle Scholar
  13. Jipa IM, Stoica-Guzun A, Stroescu M (2012) Controlled release of sorbic acid from bacterial cellulose based mono and multilayer antimicrobial films. LWT Food Sci Technol 47(2):400–406CrossRefGoogle Scholar
  14. Karuppiah S (2012) Analytical method development for dissolution release of finished solid oral dosage forms. IJCPR 4(2):48–53Google Scholar
  15. Khan T, Park JK, Kwon J-H (2007) Functional biopolymers produced by biochemical technology considering applications in food engineering. Korean J Chem Eng 24(5):816–826CrossRefGoogle Scholar
  16. Kolakovic R, Peltonen L, Laukkanen A, Hirvonen J, Laaksonen T (2012) Nanofibrillar cellulose films for controlled drug delivery. Eur J Pharm Biopharm 82(2):308–315CrossRefGoogle Scholar
  17. Lin D, Li R, Lopez-Sanchez P, Li Z (2015) Physical properties of bacterial cellulose aqueous suspensions treated by high pressure homogenizer. Food Hydrocoll 44:435–442CrossRefGoogle Scholar
  18. Liu S, Luo X, Zhou J (2013) Magnetic responsive cellulose nanocomposites and their applications. In: Ven T, Godbout T (eds) Cellulose–medical, pharmaceutical and electronic applications. InTech, RijekaGoogle Scholar
  19. Lopes TD, Riegel-Vidotti IC, Grein A, Tischer CA, de Sousa Faria-Tischer PC (2014) Bacterial cellulose and hyaluronic acid hybrid membranes: production and characterization. Int J Biol Macromol 67:401–408CrossRefGoogle Scholar
  20. Moore JW, Flanner HH (1996) Mathematical comparison of dissolution profiles. Pharm Technol 20(6):64–74Google Scholar
  21. Moursy N, Afifi N, Ghorab D, El-Saharty Y (2003) Formulation and evaluation of sustained release floating capsules of nicardipine hydrochloride. Pharmazie 58(1):38–43Google Scholar
  22. Müller A, Ni Z, Hessler N, Wesarg F, Müller FA, Kralisch D, Fischer D (2013) The biopolymer bacterial nanocellulose as drug delivery system: investigation of drug loading and release using the model protein albumin. J Pharm Sci 102(2):579–592CrossRefGoogle Scholar
  23. Murtaza G, Ullah H, Khan SA, Mir S, Khan AK, Nasir B, Azhar S, Abid MA (2015) Formulation and in vitro dissolution characteristics of sustained-release matrix tablets of tizanidine hydrochloride. Trop J Pharm Res 14(2):219–225CrossRefGoogle Scholar
  24. Nath B, Nath LK, Mazumder B, Kumar P, Sharma N, Sahu BP (2010) Preparation and characterization of salbutamol sulphate loaded ethyl cellulose microspheres using water-in-oil-oil emulsion technique. Iran J Pharm Res 9(2):97–105Google Scholar
  25. Nellore RV, Rekhi GS, Hussain AS, Tillman LG, Augsburger LL (1998) Development of metoprolol tartrate extended-release matrix tablet formulations for regulatory policy consideration. J Control Release 50(1):247–256CrossRefGoogle Scholar
  26. Pa’E N, Hamid NIA, Khairuddin N, Zahan KA, Seng KF, Siddique BM, Muhamad II (2014) Effect of different drying methods on the morphology, crystallinity, swelling ability and tensile properties of nata de coco. Sains Malays 43(5):767–773Google Scholar
  27. Palmer D, Levina M, Nokhodchi A, Douroumis D, Farrell T, Rajabi-Siahboomi A (2011) The influence of sodium carboxymethylcellulose on drug release from polyethylene oxide extended release matrices. AAPS PharmSciTech 12(3):862–871CrossRefGoogle Scholar
  28. Park JK, Jung JY, Khan T (2009) Bacterial cellulose. In: Phillips GO, Williams PA (eds) Handbook of hydrocolloids. CRC Press, Boca Raton, pp 724–739CrossRefGoogle Scholar
  29. Patil P, Rao NR, Hiremath D (2014) Preparation and characterization of mucoadhesive microcapsules of salbutamol sulfate. Asian J Pharm 4(2):141–147Google Scholar
  30. Phisalaphong M, Jatupaiboon N (2008) Biosynthesis and characterization of bacteria cellulose–chitosan film. Carbohydr Polym 74(3):482–488CrossRefGoogle Scholar
  31. Prashant P, Rajendra A, Shivakumar S, Sridhar BK (2011) Preparation and evaluation of extended release matrix tablets of diltiazem using blends of Tamarind xyloglucan with gellan gum and sodium carboxymethyl cellulose. Pharm Lett 3(4):380–392Google Scholar
  32. Qin Z, Ji L, Yin X, Zhu L, Lin Q, Qin J (2014) Synthesis and characterization of bacterial cellulose sulfates using a SO3/pyridine complex in DMAc/LiCl. Carbohydr Polym 101:947–953CrossRefGoogle Scholar
  33. Qureshi J, Amir M, Ahuja A, Baboota S, Ali J (2008) Chronomodulated drug delivery system of salbutamol sulphate for the treatment of nocturnal asthma. Indian J Pharm Sci 70(3):351–356CrossRefGoogle Scholar
  34. Rabadiya B, Rabadiyaa P (2013) Review: capsule shell material from gelatin to non animal origin material. IJPRB 2(3):42–71Google Scholar
  35. Rajabi-Siahboomi AR, Bowtell RW, Mansfield P, Davies MC, Melia CD (1996) Structure and behavior in hydrophilic matrix sustained release dosage forms: 4. studies of water mobility and diffusion coefficients in the gel layer of HPMC tablets using NMR imaging. Pharm Res 13(3):376–380CrossRefGoogle Scholar
  36. Ravi PR, Kotreka UK, Saha RN (2008) Controlled release matrix tablets of zidovudine: effect of formulation variables on the in vitro drug release kinetics. AAPS PharmSciTech 9(1):302–313CrossRefGoogle Scholar
  37. Shoda M, Sugano Y (2005) Recent advances in bacterial cellulose production. Biotechnol Bioprocess Eng 10(1):1–8CrossRefGoogle Scholar
  38. Ul-Islam M, Khan T, Park JK (2012) Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydr Polym 88(2):596–603CrossRefGoogle Scholar
  39. Ullah M, Ullah H, Murtaza G, Mahmood Q, Hussain I (2015) Evaluation of influence of various polymers on dissolution and phase behavior of carbamazepine-succinic acid cocrystal in matrix tablets. BioMed Res Int. doi: 10.1155/2015/870656 Article ID 870656 Google Scholar
  40. Ullah H, Santos HA, Khan T (2016a) Applications of bacterial cellulose in food, cosmetics and drug delivery. Cellulose 23(4):2291–2314CrossRefGoogle Scholar
  41. Ullah H, Wahid F, Santos HA, Khan T (2016b) Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites. Carbohydr Polym 150:330–352CrossRefGoogle Scholar
  42. Varjonen S, Laaksonen P, Paananen A, Valo H, Hähl H, Laaksonen T, Linder MB (2011) Self-assembly of cellulose nanofibrils by genetically engineered fusion proteins. Soft Matter 7(6):2402–2411CrossRefGoogle Scholar
  43. Zeng M, Laromaine A, Roig A (2014) Bacterial cellulose films: influence of bacterial strain and drying route on film properties. Cellulose 21(6):4455–4469CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Hanif Ullah
    • 1
    • 2
  • Munair Badshah
    • 1
  • Ermei Mäkilä
    • 3
  • Jarno Salonen
    • 3
  • Mohammad-Ali Shahbazi
    • 2
    • 4
  • Hélder A. Santos
    • 2
    Email author
  • Taous Khan
    • 1
    Email author
  1. 1.Department of PharmacyCOMSATS Institute of Information TechnologyAbbottabadPakistan
  2. 2.Division of Pharmaceutical Chemistry and Technology, Faculty of PharmacyUniversity of HelsinkiHelsinkiFinland
  3. 3.Laboratory of Industrial Physics, Department of Physics and AstronomyUniversity of TurkuTurkuFinland
  4. 4.DTU Nanotech, Department of Micro- and NanotechnologyTechnical University of DenmarkLyngbyDenmark

Personalised recommendations