Skip to main content
Log in

Structural optimisation of a multifunctional water- and oil-repellent, antibacterial, and flame-retardant sol–gel coating on cellulose fibres

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

This research aimed to optimise the structure of the multifunctional water- and oil-repellent, antibacterial, and flame-retardant hybrid polysilsesquioxane coating to increase its washing fastness to cotton fibres. In the pre-treatment process, pre-prepared Stöber silica particles were applied to the fibres by a pad-dry-cure process followed by the in situ generation of a tetraethyl orthosilicate (TEOS)-based particle-containing polysiloxane layer. A three-component equimolar sol mixture (MC), which included 1H,1H,2H,2H-perfluorooctyltriethoxysilane (SiF), 3-(trimethoxysilyl)-propyldimethyloctadecyl ammonium chloride (SiQ) and P,P-diphenyl-N-(3-(trimethoxysilyl)propyl) phosphinic amide (SiP) in combination with two different concentrations of TEOS (T and 3T) or organocyclotetrasiloxane 2,4,6,8-tetrakis(2-(diethoxy(methyl)silyl)ethyl)-2,4,6,8-tetramethyl-cyclotetrasiloxane (T4) as crosslinkers, was applied to the pre-treated cotton fibres by a pad-dry-cure process. The functional properties of the coated samples before and after repeated washing were investigated by the water θ(W) and n-hexadecane θ(C16) static contact angle as well as water sliding (roll-off) (α) angle measurements, antibacterial tests, thermogravimetric analyses and burning behaviour studies. The results showed that the inclusion of T4 into the MC sol increased the washing fastness of the coating to a significantly greater extent than the inclusion of T, and the washing fastness even further it increased if silica particles were deposited on the fibres in the pre-treatment process. The structural optimisation of the coating also led to the improvement of the functional properties of the coating, which exhibited the “Lotus effect” [θ(W) = 161° and α = 4°] and simultaneously demonstrated high antibacterial activity (the R values for Escherichia coli and Staphylococcus aureus were 81.6 and 100%, respectively), enhanced thermo-oxidative stability and “glow” retardancy. The only weakness of the optimised coating is the impairment of its oleophobicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abidi N, Cabrales L, Haigler CH (2013) Changes in the cell wall and cellulose content of developing cotton fibers investigated by FTIR spectroscopy. Carbohydr Polym 100:9–16. doi:10.1016/j.carbpol.2013.01.074

    Article  Google Scholar 

  • Alongi J, Colleoni C, Rosace G, Malucelli G (2012) Thermal and fire stability of cotton fabrics coated with hybrid phosphorus-doped silica films. J Therm Anal Calorim 110:1207–1216. doi:10.1007/s10973-011-2142-0

    Article  CAS  Google Scholar 

  • Alongi J, Colleoni C, Rosace G, Malucelli G (2014) Sol-gel derived architectures for enhancing cotton flame retardancy: effect of pure and phosphorus-doped silica phases. Polym Degrad Stab 99:92–98. doi:10.1016/j.polymdegradstab.2013.11.020

    Article  CAS  Google Scholar 

  • An YH, Friedman RJ (1998) Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J Biomed Mater Res 43:338–348

    Article  CAS  Google Scholar 

  • Arshad K, Skrifvars M, Vivod V, Volmajer Valh J, Vončina B (2014) Biodegradation of natural textile materials in soil. Tekstilec 57:118–132. doi:10.14502/Tekstilec2014.57.118-132

    Article  CAS  Google Scholar 

  • Boinovich LB, Emelyanenko AM (2013) Anti-icing potential of superhydrophobic coatings. Mendeleev Commun 23:3–10. doi:10.1016/j.mencom.2013.01.002

    Article  CAS  Google Scholar 

  • Chen S, Chen S, Jiang S, Xiong M, Luo J, Tang J, Ge Z (2011) Environmentally friendly antibacterial cotton textiles finished with siloxane sulfopropylbetaine. ACS Appl Mater Interfaces 3:1154–1162. doi:10.1021/am101275d

    Article  CAS  Google Scholar 

  • Chernyy S, Ullah S, Sørensen G, Tordrup SW, Pedersen PB, Almdal K (2015) DOPO-VTS-based coatings in the realm of fire retardants for cotton textile. J Appl Polym Sci 132:41955. doi:10.1002/app.43326

    Article  Google Scholar 

  • Chung C, Lee M, Choe EK (2004) Characterization of cotton fabric scouring by FT-IR ATR spectroscopy. Carbohydr Polym 58:417–420. doi:10.1016/j.carbpol.2004.08.005

    Article  CAS  Google Scholar 

  • Daoud WA, Xin JH, Tao X (2004) Superhydrophobic silica nanocomposite coating by a low-temperature process. J Am Ceram Soc 87:1782–1784. doi:10.1111/j.1551-2916.2004.01782.x

    Article  CAS  Google Scholar 

  • Gao L, McCarthy TJ (2006) The “Lotus effect” explained: two reasons why two length scales of topography are important. Langmuir 22:2966–2967. doi:10.1021/la0532149

    Article  CAS  Google Scholar 

  • Guo N, Chen Y, Rao Q, Yin Y, Wang C (2015) Fabrication of durable hydrophobic cellulose surface from silane-functionalized silica hydrosol via electrochemically assisted deposition. J Appl Polym Sci. doi:10.1002/APP.42733

    Google Scholar 

  • Hofacker S, Mechtel M, Mager M, Kraus H (2002) Sol–gel: a new tool for coatings chemistry. Prog Org Coat 45:159–164. doi:10.1016/S0300-9440(02)00045-0

    Article  CAS  Google Scholar 

  • Hu S, Hu Y, Song L (2012) The potential of functionalized organic–inorganic hybrid materials for influencing the thermal stability of cotton fabrics. Sci Adv Mater 4:985–993. doi:10.1166/sam.2012.1370

    Article  CAS  Google Scholar 

  • Huang W, Xing Y, Yu Y, Shang S, Dai J (2011) Enhanced washing durability of hydrophobic coating on cellulose fabric using polycarboxylic acids. Appl Surf Sci 257:4443–4444. doi:10.1016/j.apsusc.2010.12.087

    Article  CAS  Google Scholar 

  • Isquith AJ, Abbott EA, Walters PA (1972) Surface-bonded antimicrobial activity of an organosilicon quaternary ammonium chloride. Appl Microbiol 24:859–863

    CAS  Google Scholar 

  • Ivanova NA, Zaretskaya AK (2010) Simple treatment of cotton textile to impart high water repellent properties. Appl Surf Sci 257:1800–1803. doi:10.1016/j.apsusc.2010.09.021

    Article  CAS  Google Scholar 

  • Jakša G, Štefane B, Kovač J (2013) XPS and AFM characterization of aminosilanes with different numbers of bonding sites on a silicon wafer. Surf Interface Anal 45:1709–1713. doi:10.1002/sia.5311

    Article  Google Scholar 

  • Jakša G, Štefane B, Kovač J (2014) Influence of different solvents on the morphology of APTMS-modified silicon surfaces. Appl Surf Sci 315:516–522. doi:10.1016/j.apsusc.2014.05.157

    Article  Google Scholar 

  • Jeong SA, Kang TJ (2016) Superhydrophobic and transparent surfaces on cotton fabrics coated with silica nanoparticles for hierarchical roughness. Text Res J. doi:10.1177/0040517516632477

    Google Scholar 

  • Kandola BK, Horrocks AR (2000) Complex char formation in flame-retarded fibreintumescent combinations—IV. Mass loss and thermal barrier properties. Fire Mater 24:265–275. doi:10.1002/1099-1018(200011/12)24:6<265:AID-FAM747>3.0.CO;2-E

    Article  CAS  Google Scholar 

  • Lenk TJ, Hallmark VM, Hoffmann CL, Rabolt JF, Castner DG, Erdelen C, Ringsdorf H (1994) Structural investigation of molecular organization in self-assembled monolayers of a semifluorinated amidethiol. Langmuir 10:4610–4617. doi:10.1021/la00024a037

    Article  CAS  Google Scholar 

  • Liu F, Ma M, Zang D, Gao Z, Wang C (2014) Fabrication of superhydrophobic/superoleophilic cotton for application in the field of water/oil separation. Carbohydr Polym 103:480–487. doi:10.1016/j.carbpol.2013.12.022

    Article  CAS  Google Scholar 

  • Liu Y, Pan Y-T, Wang X, Acuña P, Zhu P, Wagenknecht U, Heinrich G, Zhang X-Q, Wang R, Wang D-Y (2016) Effect of phosphorus-containing inorganic–organic hybrid coating on the flammability of cotton fabrics: synthesis, characterization and flammability. Chem Eng J 294:167–175. doi:10.1016/j.cej.2016.02.080

    Article  CAS  Google Scholar 

  • Mahltig B (2015) Hydrophobic and oleophobic finishes for textiles. In: Paul R (ed) Functional finishes for textiles, improving comfort, performance and protection. Woodhead Publishing, Cambridge, pp 387–428

    Chapter  Google Scholar 

  • Mahltig B, Böttcher H (2003) Modified silica sol coatings for water-repellent textiles. J Sol-Gel Sci Technol 27:43–52. doi:10.1023/A:1022627926243

    Article  CAS  Google Scholar 

  • Mahltig B, Haufe H, Böttcher H (2005) Functionalisation of textiles by inorganic sol–gel coatings. J Mater Chem 5:4385–4398. doi:10.1039/B505177K

    Article  Google Scholar 

  • Manatunga DC, de Silva RM, de Silva KMN (2016) Double layer approach to create durable superhydrophobicity on cotton fabric using nano silica and auxiliary non fluorinated materials. Appl Surf Sci 360:777–788. doi:10.1016/j.apsusc.2015.11.068

    Article  CAS  Google Scholar 

  • Mičušík M, Nedelčev T, Omastová M, Krupa I, Olejníková K, Fedorko P, Chehimi MM (2007) Conductive polymer-coated textiles: the role of fabric treatment by pyrrole-functionalized triethoxysilane. Synth Met 157:914–923. doi:10.1016/j.synthmet.2007.09.001

    Article  Google Scholar 

  • Moulder JF, Stickle WF, Sobol PE, Bomben KD (1995) Handbook of X-ray photoelectron spectroscopy, USA. Physical Electronics Inc., Eden Prairie

    Google Scholar 

  • Nosonovsky M (2007) Multiscale roughness and stability of superhydrophobic biomimetic interfaces. Langmuir 23:3157–3161. doi:10.1021/la062301d

    Article  CAS  Google Scholar 

  • Pardal AC, Ramos SS, Santos PF, Reis LV, Almeida P (2002) Synthesis and spectroscopic characterisation of N-alkyl quaternary ammonium salts typical precursors of cyanines. Molecules 7:320–330. doi:10.3390/70300320

    Article  CAS  Google Scholar 

  • Periolatto M, Ferrero F, Montarsolo A, Mossotti R (2013) Hydrorepellent finishing of cotton fabrics by chemically modified TEOS based nanosol. Cellulose 20:355–364. doi:10.1007/s10570-012-9821-2

    Article  CAS  Google Scholar 

  • Rabolt JF, Russell TP, Twieg RJ (1984) Structural studies of semifluorinated n-alkanes. 1. Synthesis and characterization of F(CF2)n(CH2)mH in the solid state. Macromolecules 17:2786–2794. doi:10.1021/ma00142a060

    Article  CAS  Google Scholar 

  • Roe B, Zhang X (2009) Durable hydrophobic textile fabric finishing using silica nanoparticles and mixed silanes. Text Res J 79:1115–1122. doi:10.1177/0040517508100184

    Article  CAS  Google Scholar 

  • Schramm C, Rinderer B, Tessadri R (2014) Non-formaldehyde, crease resistant agent for cotton fabrics based on an organic–inorganic hybrid material. Carbohydr Polym 105:81–89. doi:10.1016/j.carbpol.2014.01.063

    Article  CAS  Google Scholar 

  • Šehić A, Tomšič B, Jerman I, Vasiljević J, Medved J, Simončič B (2016) Synergistic inhibitory action of P- and Si-containing precursors in sol–gel coatings on the thermal degradation of polyamide 6. Polym Degrad Stab 128:245–252. doi:10.1016/j.polymdegradstab.2016.03.026

    Article  Google Scholar 

  • Shirtcliffe NJ, Mchale G, Newton MI, Perry CC, Pyatt BF (2006) Plastron properties of a superhydrophobic surface. Appl Phys Lett 89:104106. doi:10.1063/1.2347266

    Article  Google Scholar 

  • Simončič B, Tomšič B, Černe L, Orel B, Jerman I, Kovač J, Žerjav M, Simončič A (2012) Multifunctional water and oil repellent and antimicrobial properties of finished cotton: influence of sol–gel finishing procedure. J Sol-Gel Sci Technol 61:340–354. doi:10.1007/s10971-011-2633-2

    Article  Google Scholar 

  • Socrates G (2001) Infrared and raman characteristic group frequencies: tables and charts. Wiley, Chichester

    Google Scholar 

  • Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69. doi:10.1016/0021-9797(68)90272-5

    Article  Google Scholar 

  • Textor T, Mahltig B (2010) A sol–gel based surface treatment for preparation of water repellent antistatic textiles. Appl Surf Sci 256:1668–1674. doi:10.1016/j.apsusc.2009.09.091

    Article  CAS  Google Scholar 

  • Tomšič B, Simončič B, Vince J, Orel B, Vilčnik A, Fir M, Vuk AŠ, Jovanovski V (2007) The use of ATR IR spectroscopy in the study of structural changes of the cellulose fibres. Tekstilec 50:3–15

    Google Scholar 

  • Tomšič B, Simončič B, Orel B, Černe L, Forte Tavčer P, Zorko M, Jerman I, Vilčnik A, Kovač J (2008) Sol–gel coating of cellulose fibres with antimicrobial and repellent properties. J Sol-Gel Sci Technol 47:44–57. doi:10.1007/s10971-008-1732-1

    Article  Google Scholar 

  • Tomšič B, Jovanovski V, Orel B, Mihelčič M, Kovač J, Francetič V, Simončič B (2015) Bacteriostatic photocatalytic properties of cotton modified with TiO2 and TiO2/aminopropyltriethoxysilane. Cellulose 22:3441–3463. doi:10.1007/s10570-015-0696-x

    Article  Google Scholar 

  • Türk M, Ehrmann A, Mahltig B (2015) Water-, oil-, and soil-repellent treatment of textiles, artificial leather, and leather. J Text I 106:611–620. doi:10.1080/00405000.2014.931108

    Article  Google Scholar 

  • Vasiljević J, Gorjanc M, Tomšič B, Orel B, Jerman I, Mozetič M, Vesel A, Simončič B (2013a) The surface modification of cellulose fibres to create super-hydrophobic, oleophobic and self-cleaning properties. Cellulose 20:277–289. doi:10.1007/s10570-012-9812-3

    Article  Google Scholar 

  • Vasiljević J, Hadžić S, Jerman I, Černe L, Tomšič B, Medved J, Godec M, Orel B, Simončič B (2013b) Study of flame-retardant finishing of cellulose fibres: organic–inorganic hybrid versus conventional organophosphonate. Polym Degrad Stab 98:2602–2608. doi:10.1016/j.polymdegradstab.2013.09.020

    Article  Google Scholar 

  • Vasiljević J, Tomšič B, Jerman I, Orel B, Jakša G, Simončič B (2014) Novel multifunctional water- and oil-repellent, antibacterial, and flame-retardant cellulose fibres created by the sol–gel process. Cellulose 21:2611–2623. doi:10.1007/s10570-014-0293-4

    Article  Google Scholar 

  • Vasiljević J, Jerman I, Jakša G, Alongi J, Malucelli G, Zorko M, Tomšič B, Simončič B (2015) Functionalization of cellulose fibres with DOPO-polysilsesquioxane flame retardant nanocoating. Cellulose 22:1893–1910. doi:10.1007/s10570-015-0599-x

    Article  Google Scholar 

  • Vasiljević J, Gorjanc M, JermanI Tomšič B, Modic M, Mozetič M, Orel B, Simončič B (2016a) Influence of oxygen plasma pre-treatment on the water repellency of cotton fibers coated with perfluoroalkyl-functionalized polysilsesquioxane. Fiber Polym 17:695–704. doi:10.1007/s12221-016-0000-0

    Article  Google Scholar 

  • Vasiljević J, Zorko M, Tomšič B, Jerman I, Simončič B (2016b) Fabrication of the hierarchically roughened bumpy-surface topography for the long-lasting highly oleophobic “lotus effect” on cotton fibres. Cellulose. doi:10.1007/s10570-016-1007-x

    Google Scholar 

  • Vilčnik A, Jerman I, Šurca Vuk A, Koželj M, Orel B, Tomšič B, Simončič B, Kovač J (2009) Structural properties and antibacterial effects of hydrophobic and oleophobic sol–gel coatings for cotton fabrics. Langmuir 25:5869–5880. doi:10.1021/la803742c

    Article  Google Scholar 

  • Yang Z, Fei B, Wang X, Xin JH (2012) A novel halogen-free and formaldehyde-free flame retardant for cotton fabrics. Fire Mater 36:31–39. doi:10.1002/fam.1082

    Article  CAS  Google Scholar 

  • Yin Y, Wang C (2012) Organic–inorganic hybrid silica film coated for improving resistance to capsicum oil on natural substances through sol–gel route. J Sol-Gel Sci Technol 64:743–749. doi:10.1007/s10971-012-2911-7

    Article  CAS  Google Scholar 

  • Yin Y, Wang C (2013) Water-repellent functional coatings through hybrid SiO2/HTEOS/CPTS sol on the surfaces of cellulose fibers. Colloids Surf A 417:120–125. doi:10.1016/j.colsurfa.2012.10.027

    Article  CAS  Google Scholar 

  • Yu M, Gu G, Meng WD, Qing FL (2007) Superhydrophobic cotton fabric coating based on a complex layer of silica nanoparticles and perfluorooctylated quaternary ammonium silane coupling agent. Appl Surf Sci 253:3669–3673. doi:10.1016/j.apsusc.2006.07.086

    Article  CAS  Google Scholar 

  • Zhang JH, Wang JM, Zhao Y, Xu L, Gao XF, Zheng YM, Jiang L (2008) How does the leaf margin make the lotus surface dry as the lotus leaf floats on water. Soft Matter 4:2232–2237. doi:10.1039/b807857b

    Article  CAS  Google Scholar 

  • Zhao Q, Wu LYL, Huang H, Liu Y (2016) Ambient-curable superhydrophobic fabric coating prepared by water-based non-fluorinated formulation. Mater Des 92:541–545. doi:10.1016/j.matdes.2015.12.054

    CAS  Google Scholar 

  • Zorko M, Vasiljević J, Tomšič B, Simončič B, Gaberšček M, Jerman I (2015) Cotton fiber hot spot in situ growth of Stöber particles. Cellulose 22:3597–3607. doi:10.1007/s10570-015-0762-4

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Slovenian Research Agency (Programme P2-0213, Programme P2-0393, Infrastructural Centre RIC UL-NTF and a grant for the Ph.D. student J.V.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Simončič.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 180 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasiljević, J., Zorko, M., Štular, D. et al. Structural optimisation of a multifunctional water- and oil-repellent, antibacterial, and flame-retardant sol–gel coating on cellulose fibres. Cellulose 24, 1511–1528 (2017). https://doi.org/10.1007/s10570-016-1187-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-1187-4

Keywords

Navigation