Skip to main content

The Effect of cellulose oxidation on interfacial bonding of nano-TiO2 coating to flax fibers

Abstract

In this study, flax fibers were oxidized in order to improve the interfacial adhesion of cellulosic fibrils to a TiO2 coating. The TiO2 coating was created on the flax fiber by a Sol–Gel dip-coating technique. The effect of cellulose oxidation and the consequent TiO2 grafting was studied on cellulose crystalline structures using X-ray diffraction. X-ray photoelectron spectroscopy was used to compare the reactivity of TiO2 Sol with oxidized and non-oxidized cellulosic fibers. In addition, transmission electron microscopy and atomic force microscopy were applied to characterize the quality of the interface between the fibers and TiO2 coating. Finally, the effect of cellulose oxidation on the mechanical properties of TiO2-grafted flax strands was investigated by tensile tests. The results showed that the oxidation increased significantly the reactivity of the cellulosic surfaces with TiO2 Sol. This method was able to increase the quality of the interface between flax fiber and TiO2 coating, which improved the thermal resistance of the fibers. Eventually, the oxidation of the fiber together with the TiO2 grafting increased significantly both ductility and maximum tensile strength of the flax strands.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Alimohammadi F, Parvinzadeh Gashti M, Shamei A (2013) Functional cellulose fibers via polycarboxylic acid/carbon nanotube composite coating. J Coat Technol Res 10:123–132. doi:10.1007/s11998-012-9429-3

    CAS  Article  Google Scholar 

  2. Alix S, Lebrun L, Marais S, Philippe E, Bourmaud A, Baley C, Morvan C (2012) Pectinase treatments on technical fibres of flax: effects on water sorption and mechanical properties. Carbohydr Polym 87:177–185. doi:10.1016/j.carbpol.2011.07.035

    CAS  Article  Google Scholar 

  3. Alix S, Colasse L, Morvan C, Lebrun L, Marais S (2014) Pressure impact of autoclave treatment on water sorption and pectin composition of flax cellulosic-fibres. Carbohydr Polym 102:21–29. doi:10.1016/j.carbpol.2013.10.092

    CAS  Article  Google Scholar 

  4. Andersons J, Spārniņš E, Joffe R (2006) Stiffness and strength of flax fiber/polymer matrix composites. Polym Compos 27:221–229. doi:10.1002/pc.20184

    CAS  Article  Google Scholar 

  5. Baley C, Le Duigou A, Bourmaud A, Davies P (2012) Influence of drying on the mechanical behaviour of flax fibres and their unidirectional composites. Compos Part A 43:1226–1233. doi:10.1016/j.compositesa.2012.03.005

    CAS  Article  Google Scholar 

  6. Bhat N, Netravali A, Gore A, Sathianarayanan M, Arolkar G, Deshmukh R (2011) Surface modification of cotton fabrics using plasma technology. Text Res J 81:1014–1026. doi:10.1177/0040517510397574

    CAS  Article  Google Scholar 

  7. Biesinger MC, Lau LWM, Gerson AR, Smart RSC (2010) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl Surf Sci 257:887–898. doi:10.1016/j.apsusc.2010.07.086

    CAS  Article  Google Scholar 

  8. Bledzki AK, Reihmane S, Gassan J (1996) Properties and modification methods for vegetable fibers for natural fiber composites. J Appl Polym Sci 59:1329–1336. doi:10.1002/(SICI)1097-4628(19960222)59:8<1329:AID-APP17>3.0.CO;2-0

    CAS  Article  Google Scholar 

  9. Brinker CJ, Frye GC, Hurd AJ, Ashley CS (1991) Fundamentals of sol-gel dip coating. Thin Solid Films 201:97–108. doi:10.1016/0040-6090(91)90158-T

    CAS  Article  Google Scholar 

  10. Cantero G, Arbelaiz A, Llano-Ponte R, Mondragon I (2003) Effects of fibre treatment on wettability and mechanical behaviour of flax/polypropylene composites. Compos Sci Technol 63:1247–1254. doi:10.1016/S0266-3538(03)00094-0

    CAS  Article  Google Scholar 

  11. Chattopadhyay SK, Singh S, Pramanik N, Niyogi UK, Khandal RK, Uppaluri R, Ghoshal AK (2011) Biodegradability studies on natural fibers reinforced polypropylene composites. J Appl Polym Sci 121:2226–2232. doi:10.1002/app.33828

    CAS  Article  Google Scholar 

  12. Clayden J, Greeves N, Warren S (2012) Organic chemistry. Oxford University Press (OUP), Oxford

    Google Scholar 

  13. Cotton FA (1999) Advanced inorganic chemistry, 6th edn. Wiley, Hoboken

    Google Scholar 

  14. Dunuwila DD, Gagliardi CD, Berglund KA (1994) Application of controlled hydrolysis of titanium(IV) isopropoxide to produce sol-gel-derived thin films. Chem Mater 6:1556–1562. doi:10.1021/cm00045a013

    CAS  Article  Google Scholar 

  15. Elanthikkal S, Gopalakrishnapanicker U, Varghese S, Guthrie JT (2010) Cellulose microfibres produced from banana plant wastes: isolation and characterization. Carbohydr Polym 80:852–859. doi:10.1016/j.carbpol.2009.12.043

    CAS  Article  Google Scholar 

  16. Foruzanmehr M, Vuillaume PY, Robert M, Elkoun S (2015) The effect of grafting a nano-TiO2 thin film on physical and mechanical properties of cellulosic natural fibers. Mater Des 85:671–678. doi:10.1016/j.matdes.2015.06.105

    CAS  Google Scholar 

  17. Galoppini E (2004) Linkers for anchoring sensitizers to semiconductor nanoparticles. Coord Chem Rev 248:1283–1297. doi:10.1016/j.ccr.2004.03.016

    CAS  Article  Google Scholar 

  18. Habibi Y, Chanzy H, Vignon MR (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13:679–687. doi:10.1007/s10570-006-9075-y

    CAS  Article  Google Scholar 

  19. Herrmann AS, Nickel J, Riedel U (1998) Construction materials based upon biologically renewable resources—from components to finished parts. Polym Degrad Stab 59:251–261. doi:10.1016/S0141-3910(97)00169-9

    CAS  Article  Google Scholar 

  20. Heuser E, Shockley W, Adams A, Grunwald EA (1948) Acetylation of cellulose in phosphoric acid solution. Ind Eng Chem 40:1500–1506. doi:10.1021/ie50464a035

    CAS  Article  Google Scholar 

  21. Huang J, Ichinose I, Kunitake T (2005) Nanocoating of natural cellulose fibers with conjugated polymer: hierarchical polypyrrole composite materials. Chem Commun 1:1717–1719. doi:10.1039/B415339A

    Article  Google Scholar 

  22. Isogai A, Kato Y (1998) Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation. Cellulose 5:153–164. doi:10.1023/A:1009208603673

    CAS  Article  Google Scholar 

  23. John MJ, Anandjiwala RD (2008) Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym Compos 29:187–207. doi:10.1002/pc.20461

    CAS  Article  Google Scholar 

  24. Joshi SV, Drzal LT, Mohanty AK, Arora S (2004) Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos Part A 35:371–376. doi:10.1016/j.compositesa.2003.09.016

    Article  Google Scholar 

  25. Jules P (2008) Agricultural sustainability: concepts, principles and evidence. Philos Trans R Soc B 363:447–465. doi:10.1098/rstb.2007.216

    Article  Google Scholar 

  26. Khalfallah M et al (2014) Innovative flax tapes reinforced Acrodur biocomposites: a new alternative for automotive applications. Mater Des 64:116–126. doi:10.1016/j.matdes.2014.07.029

    Article  Google Scholar 

  27. Kim G, Choi W (2010) Charge-transfer surface complex of EDTA-TiO2 and its effect on photocatalysis under visible light. Appl Catal B 100:77–83. doi:10.1016/j.apcatb.2010.07.014

    CAS  Article  Google Scholar 

  28. Li X, Tabil L, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15:25–33. doi:10.1007/s10924-006-0042-3

    Article  Google Scholar 

  29. Liu Z, Erhan SZ, Akin DE, Barton FE (2006) Green composites from renewable resources: preparation of epoxidized soybean oil and flax fiber composites. J Agric Food Chem 54:2134–2137. doi:10.1021/jf0526745

    CAS  Article  Google Scholar 

  30. Livingston EH (2004) Who was student and why do we care so much about his t-test? J Surg Res 118:58–65. doi:10.1016/j.jss.2004.02.003

    Article  Google Scholar 

  31. Luft JH (1961) Improvements in epoxy resin embedding methods. J Cell Biol 9:409–414. doi:10.1083/jcb.9.2.409

    CAS  Article  Google Scholar 

  32. Martin J.T. Reaney WHF, Petros Loutas (2006) A Critical Cost Benefit Analysis of Oilseed Biodiesel in Canada. BIOCAP CANADA

  33. Masuelli MA (2013) Fiber reinforced polymers—the technology applied for concrete repair. InTech

  34. Mittal A, Katahira R, Himmel M, Johnson D (2011) Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility. Biotechnol Biofuels 4:41

    CAS  Article  Google Scholar 

  35. Moafi HF, Shojaie AF, Zanjanchi MA (2011) Titania and titania nanocomposites on cellulosic fibers: synthesis, characterization and comparative study of photocatalytic activity. Chem Eng J 166:413–419. doi:10.1016/j.cej.2010.10.074

    CAS  Article  Google Scholar 

  36. Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20:848–889. doi:10.1021/ef0502397

    CAS  Article  Google Scholar 

  37. Montazer M, Pakdel E (2011) Functionality of nano titanium dioxide on textiles with future aspects: focus on wool. J Photochem Photobiol C Photochem Rev 12:293–303. doi:10.1016/j.jphotochemrev.2011.08.005

    CAS  Article  Google Scholar 

  38. Mukhopadhyay S, Fangueiro R (2009) Physical modification of natural fibers and thermoplastic films for composites—a Review. J Thermoplast Compos Mater 22:135–162. doi:10.1177/0892705708091860

    CAS  Article  Google Scholar 

  39. Nassiopoulos E, Njuguna J (2015) Thermo-mechanical performance of poly(lactic acid)/flax fibre-reinforced biocomposites. Mater Des 66(Part B):473–485. doi:10.1016/j.matdes.2014.07.051

    CAS  Article  Google Scholar 

  40. Ojamäe L, Aulin C, Pedersen H, Käll P-O (2006) IR and quantum-chemical studies of carboxylic acid and glycine adsorption on rutile TiO2 nanoparticles. J Colloid Interface Sci 296:71–78. doi:10.1016/j.jcis.2005.08.037

    Article  Google Scholar 

  41. Qiu T, Barteau MA (2006) STM study of glycine on TiO2(110) single crystal surfaces. J Colloid Interface Sci 303:229–235. doi:10.1016/j.jcis.2006.07.053

    CAS  Article  Google Scholar 

  42. Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulosethe effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5:1983–1989. doi:10.1021/bm0497769

    CAS  Article  Google Scholar 

  43. Sakata I, Morita M, Tsuruta N, Morita K (1993) Activation of wood surface by corona treatment to improve adhesive bonding. J Appl Polym Sci 49:1251–1258. doi:10.1002/app.1993.070490714

    CAS  Article  Google Scholar 

  44. Schütz C et al (2012) Hard and transparent films formed by nanocellulose–TiO < sub > 2</sub > nanoparticle hybrids. PLoS ONE 7:e45828. doi:10.1371/journal.pone.0045828

    Article  Google Scholar 

  45. Shubhra QH et al (2010) Characterization of plant and animal based natural fibers reinforced polypropylene composites and their comparative study. Fibers Polym 11:725–731. doi:10.1007/s12221-010-0725-1

    CAS  Article  Google Scholar 

  46. Siddiqui NA, Li EL, Sham M-L, Tang BZ, Gao SL, Mäder E, Kim J-K (2010) Tensile strength of glass fibres with carbon nanotube–epoxy nanocomposite coating: effects of CNT morphology and dispersion state. Compos Part A 41:539–548. doi:10.1016/j.compositesa.2009.12.011

    Article  Google Scholar 

  47. Stana-Kleinschek K, Ribitsch V, Kreze T, Fras L (2004) Quantitative determination of carboxyl groups in cellulose by complexometric titration. Mater Res Innov 8:145–146

    Article  Google Scholar 

  48. Strnad S, Sauperl O, Fras-Zemljic L (2010). Cellulose fibres funcionalised by chitosan: characterization and application. In: Elnashar M (ed) Biopolymers. InTech. doi:10.5772/10262

  49. Tojo G, Fernández M (2006) Oxidations mediated by TEMPO and related stable nitroxide radicals (Anelli Oxidation). In: Tojo G (ed) Oxidation of alcohols to aldehydes and ketones. basic reactions in organic synthesis. Springer US, pp 241–253. doi:10.1007/0-387-25725-X_5

  50. Uddin MJ, Cesano F, Bonino F, Bordiga S, Spoto G, Scarano D, Zecchina A (2007) Photoactive TiO2 films on cellulose fibres: synthesis and characterization. J Photochem Photobiol A Chem 189:286–294. doi:10.1016/j.jphotochem.2007.02.015

    CAS  Article  Google Scholar 

  51. Uddin MJ et al (2008) Cotton textile fibres coated by Au/TiO2 films: synthesis, characterization and self cleaning properties. J Photochem Photobiol A Chem 199:64–72. doi:10.1016/j.jphotochem.2008.05.004

    CAS  Article  Google Scholar 

  52. Vittadini A, Selloni A, Rotzinger FP, Grätzel M (2000) Formic acid adsorption on dry and hydrated TiO2 anatase (101) surfaces by DFT calculations. J Phys Chem B 104:1300–1306. doi:10.1021/jp993583b

    CAS  Article  Google Scholar 

  53. Wang R et al (1998) Photogeneration of highly amphiphilic TiO2 surfaces. Adv Mater 10:135–138. doi:10.1002/(SICI)1521-4095(199801)10:2<135:AID-ADMA135>3.0.CO;2-M

    Article  Google Scholar 

  54. Wang N, Zhu L, Deng K, She Y, Yu Y, Tang H (2010) Visible light photocatalytic reduction of Cr(VI) on TiO2 in situ modified with small molecular weight organic acids. Appl Catal B 95:400–407. doi:10.1016/j.apcatb.2010.01.019

    CAS  Article  Google Scholar 

  55. Weiss PA (1962) Renewable resources: a report to the committee on natural Resources of the national academy of sciences-national research council, vol 1. National Academy of Sciences-National Research Council, Washington

    Google Scholar 

  56. Yan L, Chouw N, Jayaraman K (2015) Effect of UV and water spraying on the mechanical properties of flax fabric reinforced polymer composites used for civil engineering applications. Mater Des 71:17–25. doi:10.1016/j.matdes.2015.01.003

    CAS  Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Fonds de Recherche du Québec-Nature et Technologie (FRQNT), National Sciences and Engineering Research Council of Canada (NSERC), and Centre de Technologie Minérale et de Plasturgie (CTMP) for providing the financial support as BMP-innovation scholarship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mathieu Robert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 802 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Foruzanmehr, M., Boulos, L., Vuillaume, P.Y. et al. The Effect of cellulose oxidation on interfacial bonding of nano-TiO2 coating to flax fibers. Cellulose 24, 1529–1542 (2017). https://doi.org/10.1007/s10570-016-1185-6

Download citation

Keywords

  • Cellulose oxidation
  • Flax fiber
  • TiO2 coating
  • Interfacial adhesion
  • Mechanical properties