Skip to main content

Multifunctional superamphiphobic fabrics with asymmetric wettability for one-way fluid transport and templated patterning

Abstract

In this work, multifunctional superamphiphobic fabrics with special wettability were constructed by a facile dip-coating or electrospraying process using easily available materials, viz. silica nanoparticles, heptadecafluorononanoic, and fluoroalkyl silane. The obtained HFA–FAS–SiO2 NPs@surface exhibited a contact angle (CA) of 166.4 ± 3.7° and 155.9 ± 2.1° to water and hexadecane, respectively. In addition, this surface also showed stable repellency toward various corrosive droplets at a wide range of pH values, including HCl (pH = 1), NaCl (pH = 7), and NaOH (pH = 14) solutions. After immersion in the strong acid and base solutions for 24 h, the cotton surface still maintained excellent anti-wetting property. The surface was durable enough to withstand 120 cycles of abrasion and 5 cycles of accelerated standard laundry and still kept a water CA higher than 140° and an oil CA higher than 120°. Another treatment method adopted in this work, electrospraying has been proved to be able to realize asymmetric wetting with one side displaying highly anti-wetting behavior and the other side retaining the inherent hydrophilic and oleophilic nature of the pristine cotton fabric. Based on this special wettability, the obtained fabric could display a one-way directional transport feature. This method can also be extended to create hydrophilically and oleophilically patterned superamphiphobic cotton fabrics using a template. This novel fabric is useful for the development of intelligent cellulose-based substrates for various applications.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Abbas R, Khereby MA, Sadik WA, El Demerdash AGM (2015) Fabrication of durable and cost effective superhydrophobic cotton textiles via simple one step process. Cellulose 22:887–896. doi:10.1007/s10570-014-0514-x

    CAS  Article  Google Scholar 

  • Bellanger H, Darmanin T, Guittard F (2013) Surface structuration (micro and/or nano) governed by the fluorinated tail length toward superoleophobic surfaces. Langmuir 28:186–192. doi:10.1021/la2034356

    Article  Google Scholar 

  • Cai Y, Lin L, Xue ZX, Liu MJ, Wang ST (2014) Filefish-inspired surface design for anisotropic underwater oleophobicity. Adv Funct Mater 24:809–816. doi:10.1002/adfm.201302034

    CAS  Article  Google Scholar 

  • Cao CY, Ge MZ, Huang JY, Li SH, Deng S, Zhang SN, Chen Z, Zhang KQ, Al-Deyab SS, Lai YK (2016) Robust fluorine-free superhydrophobic PDMS-Ormosil@fabrics for highly effective self-cleaning and efficient oil–water separation. J Mater Chem A 4:12179–12187. doi:10.1039/C6TA04420D

    CAS  Article  Google Scholar 

  • Deng X, Mammen L, Butt H, Vollmer D (2012) Candle soot as a template for a transparent robust superamphiphobic coating. Science 335:67–70. doi:10.1126/science.1207115

    CAS  Article  Google Scholar 

  • Fu Q, Wu X, Kumar D, Ho JWC, Kanhere PD, Srikanth N (2014) Development of Sol–gel icephobic coatings: effect of surface roughness and surface energy. ACS Appl Mater Interfaces 6:20685–20692. doi:10.1021/am504348x

    CAS  Article  Google Scholar 

  • Guo Y, Wang Q, Wang T (2011) Facile fabrication of superhydrophobic surface with micro/nanoscale binary structures on aluminum substrate. Appl Surf Sci 257:5831–5836. doi:10.1016/j.apsusc.2011.01.114

    CAS  Article  Google Scholar 

  • Huang JY, Li SH, Ge MZ, Wang LN, Xing TL, Chen GQ, Liu XF, Al-Deyab SS, Zhang KQ, Chen T, Lai YK (2015) Robust superhydrophobic TiO2@fabrics for UV shielding, self-cleaning and oil–water separation. J Mater Chem A 3:2825–2832. doi:10.1039/C4TA05332J

    CAS  Article  Google Scholar 

  • Islam S, Jadhav A, Fang J, Arnold L, Wang LJ, Padhye RJ, Wang XG, Lin T (2011) Surface deposition of chitosan on wool substrate by electrospraying. Adv Mater Res 331:165–170. doi:10.4028/www.scientific.net/AMR.331.165

    CAS  Article  Google Scholar 

  • Jin CD, Li JP, Han SJ, Wang J, Sun QF (2014) A durable, superhydrophobic, superoleophobic and corrosion-resistant coating with rose-like ZnO nanoflowerson a bamboo surface. Appl Surf Sci 320:322–327. doi:10.1016/j.apsusc.2014.09.065

    CAS  Article  Google Scholar 

  • Khedir KR, Saifaldeen ZS, Demirkan TM, Al-Hilo AA, Brozak MP, Karabacak T (2014) Robust superamphiphobic nanoscale copper sheet surfaces produced by a simple and environmentally friendly technique. Adv Eng Mater 17:982–989. doi:10.1002/adem.201400397

    Article  Google Scholar 

  • Kim EK, Hwang T, Kim SS (2011) Change in microstructure and surface properties of electrospray-synthesized silica layers. J Colloid Interface Sci 364:561–565. doi:10.1016/j.jcis.2011.08.077

    CAS  Article  Google Scholar 

  • Kim JY, Kim EK, Kim SS (2013a) Micro-nano hierarchical superhydrophobic electrospray-synthesized silica layers. J Colloid Interface Sci 392:376–381. doi:10.1016/j.jcis.2012.09.075

    CAS  Article  Google Scholar 

  • Kim EK, Kim JY, Kim SS (2013b) Synthesis of superhydrophobic SiO2 layers via combination of surface roughness and fluorination. J Solid State Chem 197:23–28. doi:10.1016/j.jssc.2012.08.017

    CAS  Article  Google Scholar 

  • Kim JH, Sung SJ, Hwang DK (2015) Electrospray coating of a TiO2 electrode for dye-sensitized solar cells by a post treatment method. Appl Mech Mater 705:51–55. doi:10.4028/www.scientific.net/AMM.705.51

    CAS  Article  Google Scholar 

  • Kobaku SPR, Kota AK, Lee DH, Mabry JM, Tuteja A (2012) Patterned superomniphobic-superomniphilic surfaces: templates for site-selective self-assembly. Angew Chem Int Ed 51:10109–10113. doi:10.1002/anie.201202823

    CAS  Article  Google Scholar 

  • Lai YK, Pan F, Xu C, Fuchs H, Chi LF (2013) In situ surface-modification-induced superhydrophobic patterns with reversible wettability and adhesion. Adv Mater 25:1682–1686. doi:10.1002/adma.201203797

    CAS  Article  Google Scholar 

  • Lai YK, Huang JY, Cui ZQ, Ge MZ, Zhang KQ, Chen Z, Chi LF (2016) Recent advances in TiO2-based nanostructure surfaces with controllable wettability and adhesion. Small 12:2203–2224. doi:10.1002/smll.201501837

    CAS  Article  Google Scholar 

  • Li SH, Huang JY, Ge MZ, Cao CY, Deng S, Zhang SN, Chen GQ, Zhang KQ, Al-Deyab SS, Lai YK (2015) Robust flower-like TiO2@cotton fabrics with special wettability for effective self-cleaning and versatile oil/water separation. Adv Mater Interfaces 2:1500220. doi:10.1002/admi.201500220

    Article  Google Scholar 

  • Liu Q, Kang Z (2014) One-step electrodeposition process to fabricate superhydrophobic surface with improved anticorrosion property on magnesium alloy. Mater Lett 137:210–213. doi:10.1016/j.matlet.2014.09.010

    CAS  Article  Google Scholar 

  • Liu TL, Kim CJ (2014) Repellent surfaces. Turning a surface superrepellent even to completely wetting liquids. Science 346:1096–1100. doi:10.1126/science.1254787

    CAS  Article  Google Scholar 

  • Liu H, Gao SW, Cai JS, He CL, Mao JJ, Zhu TX, Chen Z, Huang JY, Meng K, Zhang KQ, Al-Deyab SS, Lai YK (2016) Recent progress in fabrication and applications of superhydrophobic coating on cellulose-based substrates. Materials 9:124. doi:10.3390/ma9030124

    Article  Google Scholar 

  • Pereira C, Alves C, Monteiro A, Magen C, Pereira AM, Ibarra A, Ibarra MR, Tavares PB, Araujo JP, Blanco G, Pintado JM, Carvalho AP, Pires J, Pereira MFR, Freire C (2011) Designing novel hybrid materials by one-pot co-condensation: from hydrophobic mesoporous silica nanoparticles to superamphiphobic cotton textiles. ACS Appl Mater Interfaces 3:2289–2299. doi:10.1021/am200220x

    CAS  Article  Google Scholar 

  • Saifaldeen ZS, Khedir KR, Cansizoglu MF, Demirkan T, Karabacak T (2014) Superamphiphobic aluminum alloy surfaces with micro and nanoscale roughness produced by a simple and environmentally friendly technique. J Mater Sci 49:1839–1853. doi:10.1007/s10853-013-7872-x

    CAS  Article  Google Scholar 

  • Shateri-Khalilabad M, Yazdanshenas ME (2013a) Preparation of superhydrophobic electroconductive graphene-coated cotton cellulose. Cellulose 20:963–972. doi:10.1007/s10570-013-9873-y

    CAS  Article  Google Scholar 

  • Shateri-Khalilabad M, Yazdanshenas ME (2013b) One-pot sonochemical synthesis of superhydrophobic organic–inorganic hybrid coatings on cotton cellulose. Cellulose 20:3039–3051. doi:10.1007/s10570-013-0040-2

    CAS  Article  Google Scholar 

  • She Z, Li Q, Wang Z, Li L, Chen F, Zhou J (2013) Researching the fabrication of anticorrosion superhydrophobic surface on magnesium alloy and its mechanical stability and durability. Chem Eng J 228:415–424. doi:10.1016/j.cej.2013.05.017

    CAS  Article  Google Scholar 

  • Si Y, Fu QX, Wang XQ, Zhu J, Yu JY, Sun G, Ding B (2015) Hydrophobic fibrous membranes with tunable porous structure for equilibrium of breathable and waterproof performance. ACS Nano 9:3791–3799. doi:10.1021/nn506633b

    CAS  Article  Google Scholar 

  • Song J, Huang S, Hu K, Lu Y, Liu X, Xu W (2013) Fabrication of superoleophobic surfaces on Al substrates. J Mater Chem A 1:14783–14789. doi:10.1039/C3TA13807K

    CAS  Article  Google Scholar 

  • Tian X, Jin H, Sainio J, Ras RHA, Ikkala O (2014) Droplet and fluid gating by biomimetic janus membranes. Adv Funct Mater 24:6023–6228. doi:10.1002/adfm.201400714

    CAS  Article  Google Scholar 

  • Valipour MN, Birjandi FC, Sargolzaei J (2014) Super-non-wettable surfaces: a review. Colloids Surf A 448:93–106. doi:10.1016/j.colsurfa.2014.02.016

    Article  Google Scholar 

  • Vengatesh P, Kulandainathan MA (2015) Hierarchically ordered self-lubricating superhydrophobic anodized aluminum surfaces with enhanced corrosion resistance. ACS Appl Mater Interfaces 7:1516–1526. doi:10.1021/am506568v

    CAS  Article  Google Scholar 

  • Verho T, Bower C, Andrew P, Franssila S, Ikkala O, Ras RHA (2011) Mechanically durable superhydrophobic surfaces. Adv Mater 23:673–678. doi:10.1002/adma.201003129

    CAS  Article  Google Scholar 

  • Waghmare PR, Gunda NSK, Mitra SK (2014) Under-water superoleophobicity of fish scales. Sci Rep 4:7454. doi:10.1038/srep07454

    CAS  Article  Google Scholar 

  • Wang H, Ding J, Dai L, Wang X, Lin T (2010) Directional water-transfer through fabrics induced by asymmetric wettability. J Mater Chem 20:7938–7940. doi:10.1039/C0JM02364G

    CAS  Article  Google Scholar 

  • Wang Y, Li XY, Hu H, Liu GJ, Rabnawaz M (2014a) Hydrophilically patterned superhydrophobic cotton fabrics and their use in ink printing. J Mater Chem A 2:8094–8102. doi:10.1039/C4TA00714J

    CAS  Article  Google Scholar 

  • Wang N, Zhu ZG, Sheng JL, Al-Deyab SS, Yu JY, Ding B (2014b) Superamphiphobic nanofibrous membranes for effective filtration of fine particles. J Colloid Interface Sci 428C:41–48. doi:10.1016/j.jcis.2014.04.026

    Article  Google Scholar 

  • Wang ST, Liu KS, Yao X, Jiang L (2015a) Bioinspired surfaces with superwettability: new insight on theory, design, and applications. Chem Rev 115:8230–8293. doi:10.1021/cr400083y

    CAS  Article  Google Scholar 

  • Wang HX, Zhou H, Yang WD, Zhao Y, Fang J, Lin T (2015b) Spontaneous one-way oil-transport fabrics and their novel use for gauging liquid surface tension. ACS Appl Mater Interfaces 7:22874–22880. doi:10.1021/acsami.5b05678

    CAS  Article  Google Scholar 

  • Xu ZG, Zhao Y, Wang HX, Wang X, Lin T (2015) A superamphiphobic coating with an ammonia-triggered transition to superhydrophilic and superoleophobic for oil–water separation. Angew Chem Int Ed 127:4610–4613. doi:10.1002/anie.201411283

    Article  Google Scholar 

  • Xu GH, Wang J, Luo GY, Zhu YH, Fan WC, Huang MQ, Wang HQ, Liu XD (2016) Healable superhydrophobicity of novel cotton fabrics modified via one-pot mist copolymerization. Cellulose 23:915–927. doi:10.1007/s10570-015-0773-1

    Article  Google Scholar 

  • Xue CH, Guo XJ, Zhang MM, Ma JZ, Jia ST (2015) Fabrication of robust superhydrophobic surfaces by modification of chemically roughened fibers via thiolene click chemistry. J Mater Chem A 3:21797–21804. doi:10.1039/c5ta04802h

    CAS  Article  Google Scholar 

  • Xue CH, Zhang L, Wei PB, Jia ST (2016) Fabrication of superhydrophobic cotton textiles with flame retardancy. Cellulose 23:1471–1480. doi:10.1007/s10570-016-0885-2

    CAS  Article  Google Scholar 

  • Yetisen AK, Akram MS, Lowe CR (2013) Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13:2210–2251. doi:10.1039/C3LC50169H

    CAS  Article  Google Scholar 

  • Zeng C, Wang HX, Zhou H, Lin T (2016) Directional water transport fabrics with durable ultra-high one-way transport capacity. Adv Mater Interfaces 3:1600036. doi:10.1002/admi.201600036

    Article  Google Scholar 

  • Zhai L, Berg MC, Cebeci FC, Kim Y, Milwid JM, Rubner MF, Cohen RE (2006) Patterned superhydrophobic surfaces: toward a synthetic mimic of the namib desert beetle. Nano Lett 6:1213–1217. doi:10.1021/nl060644q

    CAS  Article  Google Scholar 

  • Zhang Y, Barboiu M (2015) Dynameric asymmetric membranes for directional water transport. Chem Commun 51:15925–15927. doi:10.1039/C5CC06805C

    CAS  Article  Google Scholar 

  • Zhang SN, Huang JY, Tang YX, Li SH, Ge MZ, Chen Z, Zhang KQ, Lai YK (2016) Understanding the role of dynamic wettability for condensate microdrop self-propelling based on designed superhydrophobic TiO2 nanostructures. Small. doi:10.1002/smll.201600687

    Google Scholar 

  • Zhao H, Law K, Sambhy V (2011) Fabrication, surface properties, and origin of superoleophobicity for a model textured surface. Langmuir 27:5927–5935. doi:10.1021/la104872q

    CAS  Article  Google Scholar 

  • Zhao H, Park K, Law K (2012) Effect of surface texturing on superoleophobicity, contact angle hysteresis, and robustness. Langmuir 28:14925–14934. doi:10.1021/la302765t

    CAS  Article  Google Scholar 

  • Zhao Y, Wang HX, Zhou H, Lin T (2016) Directional fluid transport in thin porous materials and its functional applications. Small. doi:10.1002/smll.201601070

    Google Scholar 

  • Zhou H, Wang HX, Niu HT, Lin T (2013) Superphobicity/Philicity janus fabrics with switchable, spontaneous, directional transport ability to water and oil fluids. Sci Rep 3:2964. doi:10.1038/srep02964

    Google Scholar 

  • Zhou H, Wang HX, Niu HT, Fang J, Zhao Y, Lin T (2015) Superstrong, chemically stable, superamphiphobic fabrics from particle-free polymer coatings. Adv Mater Interfaces 2:1400559. doi:10.1002/admi.201400559

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the National Natural Science Foundation of China (21501127, 51502185), Natural Science Foundation of Jiangsu Province of China (BK20140400). The project was partially supported by King Saud University, Vice Deanship of Scientific Research Chairs. We also acknowledge the funds from the project of the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Natural Science Foundation of the Jiangsu Higher Education Institutions of China (15KJB430025), and Project for Jiangsu Scientific and Technological Innovation Team (2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuekun Lai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1714 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Huang, J., Li, F. et al. Multifunctional superamphiphobic fabrics with asymmetric wettability for one-way fluid transport and templated patterning. Cellulose 24, 1129–1141 (2017). https://doi.org/10.1007/s10570-016-1177-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-1177-6

Keywords

  • Superamphiphobic
  • Dip-coating
  • Electrospraying
  • Asymmetric wettability
  • Patterned fabric