Skip to main content
Log in

Ozone treatment of jute fibers

Cellulose Aims and scope Submit manuscript

Abstract

Oxidation of cellulosic materials is required in many fields such as textile processing, natural fiber composites, medical utilization, and so on. The present study was designed to explore the possibility of ozone treatment as a greener oxidation process for jute fibers. Ozone gas was used for the treatment of waste jute fibers for different time periods in a humid atmosphere. Several characterization techniques, namely physical appearance, fiber mechanical properties, the copper number, Fourier transform infrared spectroscopy, wide-angle X-ray diffraction, scanning electron microscopy, moisture regain percentage and lightness values (L), were used to assess the effect of treatment on jute fibers. Results showed that fiber tensile properties weaken gradually as a function of treatment time, and surface functional groups alter accordingly. Changes in crystallinity after ozone treatment were also observed. Physically the fiber bundles were split into brittle single fibers, and the L value increased from a brownish shade to lighter color.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Al jibouri AKH, Turcotte G, Wu J, Cheng C-H (2015) Ozone pretreatment of humid wheat straw for biofuel production. Energy Sci Eng 3:541–548. doi:10.1002/ese3.93

    Article  CAS  Google Scholar 

  • AlMaadeed MA, Kahraman R, Khanam PN, Al-Maadeed S (2013) Characterization of untreated and treated male and female date palm leaves. Mater Des 43:526–531

    Article  CAS  Google Scholar 

  • Arooj F, Ahmad N, Shaikh IA, Chaudhry MN (2014) Application of ozone in cotton bleaching with multiple reuse of a water bath. Text Res J 84:527–538

    Article  Google Scholar 

  • Baheti V, Militky J (2013) Reinforcement of wet milled jute nano/micro particles in polyvinyl alcohol films. Fibers Polym 14:133–137

    Article  CAS  Google Scholar 

  • Baheti V, Maqsood HS, Wiener J, Militky J (2016) Reinforcement of ozone pre-treated and enzyme hydrolyzed longer jute micro crystals in poly lactic acid composite films. Compos Part B Eng 95:9–17. doi:10.1016/j.compositesb.2016.03.093

    Article  CAS  Google Scholar 

  • Castle JE, Zhdan PA (1997) Characterization of surface topography by SEM and SFM: problems and solutions. J Phys D Appl Phys 30:722

    Article  CAS  Google Scholar 

  • Duan L, Yu W (2014) Novel and efficient method to reduce the jute fibre prickle problem. Studies 14:16

    Google Scholar 

  • Eren HA, Anis P (2009) Surface trimer removal of polyester fibers by ozone treatment. Text Res J 79:652–656

    Article  CAS  Google Scholar 

  • Eren HA, Avinc O, Uysal P, Wilding M (2011) The effects of ozone treatment on polylactic acid (PLA) fibres. Text Res J 81:1091–1099

    Article  CAS  Google Scholar 

  • Eren HA, Ozturk D, Eren S (2012) Afterclearing of disperse dyed polyester with gaseous ozone. Color Technol 128:75–81

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. doi:10.1007/s10570-013-0030-4

    Article  CAS  Google Scholar 

  • Gashti MP, Willoughby J, Agrawal P (2011) Surface and bulk modification of synthetic textiles to improve dyeability. Text Dye. doi:10.5772/800

    Google Scholar 

  • Gashti MP, Pournaserani A, Ehsani H, Gashti MP (2013) Surface oxidation of cellulose by ozone-gas in a vacuum cylinder to improve the functionality of fluoromonomer. Vacuum 91:7–13. doi:10.1016/j.vacuum.2012.10.015

    Article  CAS  Google Scholar 

  • Islam MS, Hamdan S, Rahman MR et al (2011) Dynamic Young’s modulus, morphological, and thermal stability of 5 tropical light hardwoods modified by benzene diazonium salt treatment. BioResources 6:737–750

    CAS  Google Scholar 

  • Jabasingh SA, Nachiyar CV (2012) Process optimization for the biopolishing of jute fibers with cellulases from Aspergillus Nidulans AJ SU04. Int J Biosci Biochem Bioinforma 2:12

    Google Scholar 

  • Karmakar SR (1999) Chemical technology in the pre-treatment processes of textiles. Elsevier, Amsterdam

    Google Scholar 

  • Kasprzyk-Hordern B, Ziółek M, Nawrocki J (2003) Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Appl Catal B Environ 46:639–669

    Article  CAS  Google Scholar 

  • Klemm D, Schumann D, Kramer F et al (2006) Nanocelluloses as innovative polymers in research and application. Polysaccharides Ii. Springer, Berlin, pp 49–96

    Chapter  Google Scholar 

  • Krishnamachari P, Zhang J, Lou J et al (2009) Biodegradable poly (lactic acid)/clay nanocomposites by melt intercalation: a study of morphological, thermal, and mechanical properties. Int J Polym Anal Charact 14:336–350. doi:10.1080/10236660902871843

    Article  CAS  Google Scholar 

  • Lee M, Lee MS, Wakida T et al (2006) Chemical modification of nylon 6 and polyester fabrics by ozone-gas treatment. J Appl Polym Sci 100:1344–1348

    Article  CAS  Google Scholar 

  • Lopez A, Ricco G, Ciannarella R et al (1999) Textile wastewater reuse: ozonation of membrane concentrated secondary effluent. Water Sci Technol 40:99–105

    Article  CAS  Google Scholar 

  • Manning TJ, Little B, Purcell J et al (2002) Ozone decomposition data for kinetics exercises. Chem Educ 7:278–283

    Article  CAS  Google Scholar 

  • Maqsood HS, Wiener J, Baheti V et al (2016) Ozonation: a green source for oxidized cotton. Fibres Text East Eur 24:19–21. doi:10.5604/12303666.1168523

    Article  CAS  Google Scholar 

  • Meyabadi TF, Dadashian F (2012) Optimization of enzymatic hydrolysis of waste cotton fibers for nanoparticles production using response surface methodology. Fibers Polym 13:313–321

    Article  CAS  Google Scholar 

  • Parvinzadeh M, Ebrahimi I (2011) Atmospheric air-plasma treatment of polyester fiber to improve the performance of nanoemulsion silicone. Appl Surf Sci 257:4062–4068. doi:10.1016/j.apsusc.2010.11.175

    Article  CAS  Google Scholar 

  • Parvinzadeh Gashti M, Hegemann D, Stir M, Hulliger J (2014) Thin film plasma functionalization of polyethylene terephthalate to induce bone-like hydroxyapatite nanocrystals. Plasma Process Polym 11:37–43. doi:10.1002/ppap.201300100

    Article  CAS  Google Scholar 

  • Parvinzadeh Gashti M, Ebrahimi I, Pousti M (2015) New insights into corona discharge surface ionization of polyethylene terephthalate via a combined computational and experimental assessment. Curr Appl Phys 15:1075–1083. doi:10.1016/j.cap.2015.06.009

    Article  Google Scholar 

  • Perincek SD, Duran K, Korlu AE, Bahtiyari İM (2007) An investigation in the use of ozone gas in the bleaching of cotton fabrics. Ozone Sci Eng 29:325–333

    Article  CAS  Google Scholar 

  • Perincek S, Bahtiyari MI, Körlü AE, Duran K (2008) Ozone treatment of Angora rabbit fiber. J Clean Prod 16:1900–1906

    Article  CAS  Google Scholar 

  • Prabaharan M, Rao JV (2001) Study on ozone bleaching of cotton fabric–process optimisation, dyeing and finishing properties. Color Technol 117:98–103

    Article  CAS  Google Scholar 

  • Prasad BM, Sain MM, Roy DN (2005) Properties of ball milled thermally treated hemp fibers in an inert atmosphere for potential composite reinforcement. J Mater Sci 40:4271–4278

    Article  CAS  Google Scholar 

  • Punyamurthy R, Sampathkumar D, Srinivasa CV, Bennehalli B (2012) Effect of alkali treatment on water absorption of single cellulosic abaca fiber. BioResources 7:3515–3524

    CAS  Google Scholar 

  • Rabiej M, Rabiej S (2005) Analysis of synchrotron WAXD curves of semicrystalline polymers by means of the OptiFit computer program. Fibres Text East Eur 13:75–78

    CAS  Google Scholar 

  • Saha P, Manna S, Chowdhury SR et al (2010) Enhancement of tensile strength of lignocellulosic jute fibers by alkali-steam treatment. Bioresour Technol 101:3182–3187. doi:10.1016/j.biortech.2009.12.010

    Article  CAS  Google Scholar 

  • Sargunamani D, Selvakumar N (2006) A study on the effects of ozone treatment on the properties of raw and degummed mulberry silk fabrics. Polym Degrad Stab 91:2644–2653

    Article  CAS  Google Scholar 

  • Sarkar PB, Mazumdar AK, Pal KB (1948) 4—THE HEMICELLULOSES OF JUTE FIBRE. J Text Inst Trans 39:T44–T58

    Article  CAS  Google Scholar 

  • Sun RC, Tomkinson J, Wang YX, Xiao B (2000) Physico-chemical and structural characterization of hemicelluloses from wheat straw by alkaline peroxide extraction. Polymer (Guildf) 41:2647–2656

    Article  CAS  Google Scholar 

  • Świetlik J, Dąbrowska A, Raczyk-Stanisławiak U, Nawrocki J (2004) Reactivity of natural organic matter fractions with chlorine dioxide and ozone. Water Res 38:547–558

    Article  Google Scholar 

  • Tzitzi M, Vayenas DV, Lyberatos G (1994) Pretreatment of textile industry wastewaters with ozone. Water Sci Technol 29:151–160

    CAS  Google Scholar 

  • Zhang C, Price LM, Daly WH (2006) Synthesis and characterization of a trifunctional aminoamide cellulose derivative. Biomacromolecules 7:139–145

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafiz Shahzad Maqsood.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maqsood, H.S., Bashir, U., Wiener, J. et al. Ozone treatment of jute fibers. Cellulose 24, 1543–1553 (2017). https://doi.org/10.1007/s10570-016-1164-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-1164-y

Keywords

Navigation