Advertisement

Cellulose

, Volume 24, Issue 2, pp 693–704 | Cite as

The nanocellulose biorefinery: woody versus herbaceous agricultural wastes for NCC production

  • Araceli GarcíaEmail author
  • Jalel Labidi
  • Mohamed Naceur Belgacem
  • Julien BrasEmail author
Original Paper

Abstract

In the present work two agricultural residues (apple tree pruning and pea stalks) were studied as sources of nanocellulose. Different pretreatments that might be used in a biorefinery were applied to these lignocellulosic materials: autohydrolysis, organosolv (acetosolv) and alkaline pretreatments. After conventional bleaching, the resulting cellulosic fractions were submitted to a classical acid hydrolysis for nanocellulose crystal (NCC) production. The results showed that after applying different pretreatments, the resulting NCCs had different lengths (from 300 to 676 nm), surface charges (from 17 to 98 μmol acid groups/g NCC), purity (from 0.3 to 11.6% w/w of inorganics), crystallinity indexes and even allomorphism. These results highlighted the importance that cellulose source and particularly the applied pretreatments have on nanocrystal properties and suggest how biorefining pathways for lignocellulosic materials could customize such NCC features as surface reactivity or suitability for chemical modification.

Keywords

Cellulose nanocrystals Organosolv Crystallinity Surface charge Allomorphism Lignocellulosic biomass 

Notes

Acknowledgments

Authors thank the Department of Education, Universities and Investigation of the Basque Government (Postdoctoral Development Program) for financially supporting this work. LGP2 is part of the LabEx Tec 21 (Investissements d’Avenir—Grant Agreement No. ANR-11-LABX-0030) and of the Énergies du Futur and PolyNat Carnot Institutes (Investissements d’Avenir—Grant Agreements Nos. ANR-11-CARN-007-01 and ANR-11-CARN-030-01).

References

  1. Abidi N, Cabrales L, Haigler CH (2014) Changes in the cell wall and cellulose content of developing cotton fibers investigated by FTIR spectroscopy. Carbohydr Polym 100:9–16CrossRefGoogle Scholar
  2. Alila S, Besbes I, Vilar MR, Mutjé P, Boufi S (2013) Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): a comparative study. Ind Crops Prod 41:250–259CrossRefGoogle Scholar
  3. Beck S, Bouchard J (2014) Auto-catalyzed acidic desulfation of cellulose nanocrystals. Nord Pulp Pap Res J 29:6–14CrossRefGoogle Scholar
  4. Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydr Polym 84:975–983CrossRefGoogle Scholar
  5. Bettaieb F, Khiari R, Dufresne A, Mhenni MF, Belgacem MN (2015a) Mechanical and thermal properties of Posidonia oceanica cellulose nanocrystal reinforced polymer. Carbohydr Polym 123:99–104CrossRefGoogle Scholar
  6. Bettaieb F, Khiari R, Hassan ML, Belgacem MN, Bras J, Dufresne A, Mhenni MF (2015b) Preparation and characterization of new cellulose nanocrystals from marine biomass Posidonia oceanica. Ind Crops Prod 72:175–182CrossRefGoogle Scholar
  7. Bras J, Hassan ML, Bruzesse C, Hassan EA, El-Wakil NA, Dufresne A (2010) Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites. Ind Crops Prod 32:627–633CrossRefGoogle Scholar
  8. Bras J, Viet D, Bruzzese C, Dufresne A (2011) Correlation between stiffness of sheets prepared from cellulose whiskers and nanoparticles dimensions. Carbohydr Polym 84:211–215CrossRefGoogle Scholar
  9. Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169CrossRefGoogle Scholar
  10. Carrillo F, Colom X, Suñol JJ, Saurina J (2004) Structural FTIR analysis and thermal characterisation of lyocell and viscose-type fibres. Eur Polym J 40:2229–2234CrossRefGoogle Scholar
  11. Chaker A, Alila S, Mutjé P, Vilar MR, Boufi S (2013) Key role of the hemicellulose content and the cell morphology on the nanofibrillation effectiveness of cellulose pulps. Cellulose 20:2863–2875CrossRefGoogle Scholar
  12. Cheng G, Varanasi P, Li C, Liu H, Melnichenko YB, Simmons BA, Kent MS, Singh S (2011) Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis. Biomacromolecules 12:933–941CrossRefGoogle Scholar
  13. Devi RR, Dhar P, Kalamdhad A, Katiyar V (2015) Fabrication of cellulose nanocrystals from agricultural compost. Compost Sci Util 23:104–116CrossRefGoogle Scholar
  14. Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227CrossRefGoogle Scholar
  15. Espino E, Cakir M, Domenek S, Román-Gutiérrez AD, Belgacem N, Bras J (2014) Isolation and characterization of cellulose nanocrystals from industrial by-products of Agave tequilana and barley. Ind Crops Prod 62:552–559CrossRefGoogle Scholar
  16. FAOSTAT (2016) Food and agriculture organization of the United Nations. Statistics division. Online data collected from 2014 statistics in web http://faostat3.fao.org/browse/Q/*/E. Accessed 20 Aug 2016
  17. Flauzino Neto WP, Silvério HA, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from agro-industrial residue—soy hulls. Ind Crops Prod 42:480–488CrossRefGoogle Scholar
  18. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRefGoogle Scholar
  19. French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index. Cellulose 20:583–588CrossRefGoogle Scholar
  20. Galbe M, Zacchi G (2012) Pretreatment: the key to efficient utilization of lignocellulosic materials. Biomass Bioenergy 46:70–78CrossRefGoogle Scholar
  21. García A, González Alriols M, Labidi J (2012) Evaluation of the effect of ultrasound on organosolv black liquor from olive tree pruning residues. Bioresour Technol 108:155–161CrossRefGoogle Scholar
  22. García A, González Alriols M, Labidi J (2014) Evaluation of different lignocellulosic raw materials as potential alternative feedstocks in biorefinery processes. Ind Crops Prod 53:102–110CrossRefGoogle Scholar
  23. Gaur R, Agrawal R, Kumar R, Ramu E, Bansal VR, Gupta RP, Kumar R, Tuli DK, Das B (2015) Evaluation of recalcitrant features impacting enzymatic saccharification of diverse agricultural residues treated by steam explosion and dilute acid. RSC Adv 5:60754–60762CrossRefGoogle Scholar
  24. Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542CrossRefGoogle Scholar
  25. Haddadou I, Aliouche D, Brosse N, Amirou S (2015) Characterization of cellulose prepared from some Algerian lignocellulosic materials (zeen oak wood, Aleppo pine wood and date palm rachis). Eur J Wood Wood Prod 73:419–421CrossRefGoogle Scholar
  26. Isogai A (2013) Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials. J Wood Sci 59:449–459CrossRefGoogle Scholar
  27. Jahan MS, Mun SP (2005) Effect of tree age on the cellulose structure of Nalita wood (Trema orientalis). Wood Sci Technol 39:367CrossRefGoogle Scholar
  28. Jonoobi M, Oladi R, Davoudpour Y, Oksman K, Dufresne A, Hamzeh Y, Davoodi R (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22:935–969CrossRefGoogle Scholar
  29. Kallel F, Bettaieb F, Khiari R, García A, Bras J, Chaabouni SE (2016) Isolation and structural characterization of cellulose nanocrystals extracted from garlic straw residues. Ind Crops Prod 87:287–296CrossRefGoogle Scholar
  30. Kargarzadeh H, Ahmad I, Abdullah I, Dufresne A, Zainudin SY, Sheltami RM (2012) Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19:855–866CrossRefGoogle Scholar
  31. Kulshreshtha AK, Chudasama VP, Dweltz NE (1975) Analysis of cotton fiber maturity. I. X-ray study of phase transformation in various cottons. J Appl Polym Sci 19:115–123CrossRefGoogle Scholar
  32. Lin N, Dufresne A (2014) Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale 6:5384–5393CrossRefGoogle Scholar
  33. Mathew AK, Parameshwaran B, Sukumaran RK, Pandey A (2016) An evaluation of dilute acid and ammonia fiber explosion pretreatment for cellulosic ethanol production. Bioresour Technol 199:13–20CrossRefGoogle Scholar
  34. Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci 38:522–550CrossRefGoogle Scholar
  35. Mondragon G, Fernandes S, Retegi A, Peña C, Algar I, Eceiza A, Arbelaiz A (2014) A common strategy to extracting cellulose nanoentities from different plants. Ind Crops Prod 55:140–148CrossRefGoogle Scholar
  36. Nam S, French AD, Condon BD, Concha M (2016) Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohydr Polym 135:1–9CrossRefGoogle Scholar
  37. Nelson ML, O’Connor RT (1964) Relation of certain infrared bands to cellulose crystallinity and crystal latticed type. Part I. Spectra of lattice types I, II, III and of amorphous cellulose. J Appl Polym Sci 8:1311–1324CrossRefGoogle Scholar
  38. O’Connor RT, DuPré EF, Mitcham D (1958) Applications of Infrared absorption spectroscopy to investigations of cotton and modified cottons part I: physical and crystalline modifications and oxidation. Text Res J 28:382–392CrossRefGoogle Scholar
  39. Romdhane A, Aurousseau M, Guillet A, Mauret E (2015) Effect of pH and ionic strength on the electrical charge and particle size distribution of starch nanocrystal suspensions. Starch Stärke 67:319–327CrossRefGoogle Scholar
  40. Rosli NA, Ahmad I, Abdullah I (2013) Isolation and characterization of cellulose nanocrystals from Agave angustifolia fibre. BioResources 8:1893–1908CrossRefGoogle Scholar
  41. Rowell R (1983) The chemistry of solid wood. Based on a short course and symposium sponsored by the division of cellulose, paper and textile chemistry at the 185th spring meeting of the American Chemical Society, Seattle (70–72). 185th ACS National Meeting. Chemical & Engineering News Archive 61, pp 30–116Google Scholar
  42. Ruel K, Nishiyama Y, Joseleau J-P (2012) Crystalline and amorphous cellulose in the secondary walls of Arabidopsis. Plant Sci 193–194:48–61CrossRefGoogle Scholar
  43. Sèbe G, Ham-Pichavant F, Ibarboure E, Koffi ALC, Tingaut P (2012) Supramolecular structure characterization of cellulose II nanowhiskers produced by acid hydrolysis of cellulose I substrates. Biomacromolecules 13:570–578CrossRefGoogle Scholar
  44. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794CrossRefGoogle Scholar
  45. Siqueira G, Bras J, Dufresne A (2010a) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765CrossRefGoogle Scholar
  46. Siqueira G, Bras J, Dufresne A (2010b) Luffa cylindrica as a lignocellulosic source of fiber, microfibrillated cellulose and cellulose nanocrystals. Bioresources 5(2):2010Google Scholar
  47. Urruzola I, Robles E, Serrano L, Labidi J (2014) Nanopaper from almond (Prunus dulcis) shell. Cellulose 21:1619–1629CrossRefGoogle Scholar
  48. Velásquez-Cock J, Castro C, Gañán P, Osorio M, Putaux J-L, Serpa A, Zuluaga R (2016) Influence of the maturation time on the physico-chemical properties of nanocellulose and associated constituents isolated from pseudostems of banana plant c.v. Valery. Ind Crops Prod 83:551–560CrossRefGoogle Scholar
  49. Wise LE, Murphy M, D’Addieco AA (1946) Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Pap Trade J 122:35Google Scholar
  50. Zhang J, Wang Y, Zhang L, Zhang R, Liu G, Cheng G (2014a) Understanding changes in cellulose crystalline structure of lignocellulosic biomass during ionic liquid pretreatment by XRD. Bioresour Technol 151:402–405CrossRefGoogle Scholar
  51. Zhang PP, Tong DS, Lin CX, Yang HM, Zhong ZK, Yu WH, Wang H, Zhou CH (2014b) Effects of acid treatments on bamboo cellulose nanocrystals. Asia Pac J Chem Eng 9:686–695CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Université Grenoble AlpesLaboratory of Pulp and Paper Science and Graphic Arts (LGP2)GrenobleFrance
  2. 2.Department of Chemical and Environmental EngineeringUniversity of the Basque Country (UPV/EHU)Donostia-San SebastiánSpain
  3. 3.Université Grenoble AlpesCentre National de la Recherche Scientifique (CNRS)GrenobleFrance
  4. 4.Institut Universitaire de France (IUF)ParisFrance

Personalised recommendations