Cellulose

, Volume 24, Issue 2, pp 755–767 | Cite as

Enhanced properties of poly(ethylene oxide)/cellulose nanofiber biocomposites

  • Fatemeh Safdari
  • Pierre J. Carreau
  • Marie C. Heuzey
  • Musa R. Kamal
  • Mohini M. Sain
Original Paper

Abstract

Poly(ethylene oxide) (PEO)/cellulose nanofiber (CNF) biocomposites were developed using a simple aqueous solution technique. A PEO/CNF composite was also produced in the molten state to compare different preparations. The effects of nanofibers on different properties of PEO including rheological, thermal, mechanical and optical were investigated. For the sample prepared in the molten state, no change in properties was observed as compared to the neat matrix. On the other hand, for the solution-based samples, scanning electron microscopy revealed good dispersion/distribution of nanofibers in the PEO, which resulted in a significant increase of the rheological properties and also a notable shear-thinning behavior. A liquid- to solid-like behavior transition along with the observation of apparent yield stress suggested the formation of a strong CNF 3D network. The Young’s modulus and tensile strength of PEO with 3 wt% CNFs were enhanced by 49 and 35%, respectively, compared to the neat PEO. The storage modulus of PEO was significantly improved for all tested temperatures in the dynamic mechanical thermal analysis; at room temperature that corresponds to the rubbery region, a 47% enhancement was observed by incorporating 3 wt% nanofibers. Also, PEO/CNF composites demonstrated good optical transmittance, which is generally not the case with many reinforcements. These results show that PEO/CNF biocomposites with good mechanical and optical properties can be fabricated via a simple aqueous solution technique.

Keywords

Biocomposites Poly(ethylene oxide) (PEO) Cellulose nanofibers (CNFs) Rheology Crystallinity Mechanical properties Transparency 

References

  1. Abbasi S, Carreau PJ, Derdouri A, Moan M (2009) Rheological properties and percolation in suspensions of multiwalled carbon nanotubes in polycarbonate. Rheol Acta 48:943–959. doi:10.1007/s00397-009-0375-7 CrossRefGoogle Scholar
  2. Alloin F, D’Aprea A, Dufresne A, El Kissi N, Bossard F (2011) Poly(oxyethylene) and ramie whiskers based nanocomposites: influence of processing: extrusion and casting/evaporation. Cellulose 18:957–973. doi:10.1007/s10570-011-9543-x CrossRefGoogle Scholar
  3. Ambrosio-Martín J, Fabra MJ, Lopez-Rubio A, Lagaron JM (2015) Melt polycondensation to improve the dispersion of bacterial cellulose into polylactide via melt compounding: enhanced barrier and mechanical properties. Cellulose 22:1201–1226. doi:10.1007/s10570-014-0523-9 CrossRefGoogle Scholar
  4. Arias A, Heuzey MC, Huneault M (2013) Thermomechanical and crystallization behavior of polylactide-based flax fiber biocomposites. Cellulose 20:439–452. doi:10.1007/s10570-012-9836-8 CrossRefGoogle Scholar
  5. Azizi Samir MAS, Alloin F, Paillet M, Dufresne A (2004a) Tangling effect in fibrillated cellulose reinforced nanocomposites. Macromolecules 37:4313–4316. doi:10.1021/ma035939u CrossRefGoogle Scholar
  6. Azizi Samir MAS, Alloin F, Sanchez JY, Dufresne A (2004b) Cellulose nanocrystals reinforced poly(oxyethylene). Polymer 45:4149–4157. doi:10.1016/j.polymer.2004.03.094 CrossRefGoogle Scholar
  7. Azizi Samir MAS, Mateos AM, Alloin F, Sanchez JY, Dufresne A (2004c) Plasticized nanocomposite polymer electrolytes based on poly(oxyethylene) and cellulose whiskers. Electrochim Acta 49:4667–4677. doi:10.1016/j.electacta.2004.05.021 CrossRefGoogle Scholar
  8. Azizi Samir MAS, Alloin F, Dufresne A (2005a) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626. doi:10.1021/bm0493685 CrossRefGoogle Scholar
  9. Azizi Samir MAS, Chazeau L, Alloin F, Cavaillé JY, Dufresne A, Sanchez JY (2005b) POE-based nanocomposite polymer electrolytes reinforced with cellulose whiskers. Electrochim Acta 50:3897–3903. doi:10.1016/j.electacta.2005.02.065 CrossRefGoogle Scholar
  10. Bagheriasl D, Carreau PJ, Dubois C, Riedl B (2015) Properties of polypropylene and polypropylene/poly(ethylene-co-vinyl alcohol) blend/cnc nanocomposites. Compos Sci Technol 117:357–363. doi:10.1016/j.compscitech.2015.07.012 CrossRefGoogle Scholar
  11. Bagheriasl D, Carreau PJ, Riedl B, Dubois C, Hamad WY (2016) Shear rheology of polylactide (PLA)–cellulose nanocrystal (CNC) nanocomposites. Cellulose 23:1885–1897. doi:10.1007/s10570-016-0914-1 CrossRefGoogle Scholar
  12. Brown EE, Laborie MPG (2007) Bioengineering bacterial cellulose/poly(ethylene oxide) nanocomposites. Biomacromolecules 8:3074–3081. doi:10.1021/bm700448x CrossRefGoogle Scholar
  13. Cai Z, Kim J (2010) Bacterial cellulose/poly (ethylene glycol) composite: characterization and first evaluation of biocompatibility. Cellulose 17:83–91. doi:10.1007/s10570-009-9362-5 CrossRefGoogle Scholar
  14. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33. doi:10.1007/s10853-009-3874-0 CrossRefGoogle Scholar
  15. Elimat ZM (2014) Optical characterization of poly (ethylene oxide)/zinc oxide thin films. Radiat Eff Defect Solids 169:686–695. doi:10.1080/10420150.2014.931402 CrossRefGoogle Scholar
  16. Fortunato G, Zimmermann T, Lübben J, Bordeanu N, Hufenus R (2012) Reinforcement of polymeric submicrometer-sized fibers by microfibrillated cellulose. Macromol Mater Eng 297:576–584. doi:10.1002/mame.201100408 CrossRefGoogle Scholar
  17. Frenot A, Henriksson MW, Walkenström P (2007) Electrospinning of cellulose-based nanofibers. J Appl Polym Sci 103:1473–1482. doi:10.1002/app.24912 CrossRefGoogle Scholar
  18. Ghanbari A, Heuzey MC, Carreau PJ, Ton-That MT (2013a) Morphological and rheological properties of PET/clay nanocomposites. Rheol Acta 52:59–74. doi:10.1007/s00397-012-0667-1 CrossRefGoogle Scholar
  19. Ghanbari A, Heuzey MC, Carreau PJ, Ton-That MT (2013b) A novel approach to control thermal degradation of PET/organoclay nanocomposites and improve clay exfoliation. Polymer 54:1361–1369. doi:10.1016/j.polymer.2012.12.066 CrossRefGoogle Scholar
  20. Halpin JC, Kardos JL (1972) Moduli of crystalline polymers employing composite theory. J Appl Phys 43:2235–2241. doi:10.1063/1.1661482 CrossRefGoogle Scholar
  21. Hamad WY, Miao C (2014) Nanocomposite biomaterials of nanocrystalline cellulose (NCC) and polylactic acid (PLA). US 8,829,110 B2Google Scholar
  22. Hu G, Zhao C, Zhang S, Yang M, Wang Z (2006) Low percolation thresholds of electrical conductivity and rheology in poly(ethylene terephthalate) through the networks of multi-walled carbon nanotubes. Polymer 47:480–488. doi:10.1016/j.polymer.2005.11.028 CrossRefGoogle Scholar
  23. Iwatake A, Nogi M, Yano H (2008) Cellulose nanofiber-reinforced polylactic acid. Compos Sci Technol 68:2103–2106. doi:10.1016/j.compscitech.2008.03.006 CrossRefGoogle Scholar
  24. Iyer KA, Schueneman GT, Torkelson JM (2015) Cellulose nanocrystal/polyolefin biocomposites prepared by solid-state shear pulverization: superior dispersion leading to synergistic property enhancements. Polymer 56:464–475. doi:10.1016/j.polymer.2014.11.017 CrossRefGoogle Scholar
  25. Janardhnan S, Sain M (2011) Bio-treatment of natural fibers in isolation of cellulose nanofibres: impact of pre-refining of fibers on bio-treatment efficiency and nanofiber yield. J Polym Environ 19:615–621. doi:10.1007/s10924-011-0312-6 CrossRefGoogle Scholar
  26. Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70:1742–1747. doi:10.1016/j.compscitech.2010.07.005 CrossRefGoogle Scholar
  27. Kaczmarek H, Bajer K, Gałka P, Kotnowska B (2007) Photodegradation studies of novel biodegradable blends based on poly(ethylene oxide) and pectin. Polym Degrad Stab 92:2058–2069. doi:10.1016/j.polymdegradstab.2007.07.019 CrossRefGoogle Scholar
  28. Kalia S, Boufi S, Celli A, Kango S (2014) Nanofibrillated cellulose: surface modification and potential applications. Colloid Polym Sci 292:5–31. doi:10.1007/s00396-013-3112-9 CrossRefGoogle Scholar
  29. Kamal MR, Khoshkava V (2015) Effect of cellulose nanocrystals (CNC) on rheological and mechanical properties and crystallization behavior of PLA/CNC nanocomposites. Carbohydr Polym 123:105–114. doi:10.1016/j.carbpol.2015.01.012 CrossRefGoogle Scholar
  30. Khoshkava V, Kamal MR (2014) Effect of cellulose nanocrystals (CNC) particle morphology on dispersion and rheological and mechanical properties of polypropylene/CNC nanocomposites. ACS Appl Mater Interfaces 6:8146–8157. doi:10.1021/am500577e CrossRefGoogle Scholar
  31. Kloser E, Gray DG (2010) Surface grafting of cellulose nanocrystals with poly(ethylene oxide) in aqueous media. Langmuir 26:13450–13456. doi:10.1021/la101795s CrossRefGoogle Scholar
  32. Lee JY, Su KE, Chan EP, Zhang Q, Emrick T, Crosby AJ (2007) Impact of surface-modified nanoparticles on glass transition temperature and elastic modulus of polymer thin films. Macromolecules 40:7755–7757. doi:10.1021/ma071332s CrossRefGoogle Scholar
  33. Miao C, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20:2221–2262. doi:10.1007/s10570-013-0007-3 CrossRefGoogle Scholar
  34. Nakagaito AN, Fujimura A, Sakai T, Hama Y, Yano H (2009) Production of microfibrillated cellulose (MFC)-reinforced polylactic acid (PLA) nanocomposites from sheets obtained by a papermaking-like process. Compos Sci Technol 69:1293–1297. doi:10.1016/j.compscitech.2009.03.004 CrossRefGoogle Scholar
  35. Park OH, Eo YJ, Choi YK, Bae BS (1999) Preparation and optical properties of silica-poly(ethylene oxide) hybrid materials. J Solgel Sci Technol 16:235–241. doi:10.1023/a:1008717219952 CrossRefGoogle Scholar
  36. Petersson L, Oksman K (2006) Biopolymer based nanocomposites: comparing layered silicates and microcrystalline cellulose as nanoreinforcement. Compos Sci Technol 66:2187–2196. doi:10.1016/j.compscitech.2005.12.010 CrossRefGoogle Scholar
  37. Ramezani Kakroodi A, Cheng S, Sain M, Asiri A (2014) Mechanical, Thermal, and morphological properties of nanocomposites based on polyvinyl alcohol and cellulose nanofiber from aloe vera rind. J Nanomater 2014:1–7. doi:10.1155/2014/903498 CrossRefGoogle Scholar
  38. Safdari F, Bagheriasl D, Carreau PJ, Heuzey MC, Kamal MR (2016a) High-performance polylactide biocomposites reinforced with cellulose nanofibers. SPE Plast Res Online. doi:10.2417/spepro.006650 Google Scholar
  39. Safdari F, Bagheriasl D, Carreau PJ, Heuzey MC, Kamal MR (2016b) Rheological, mechanical, and thermal properties of polylactide/cellulose nanofiber biocomposites. Polym Compos. doi:10.1002/pc.24127 Google Scholar
  40. Sanchez-Garcia M, Lagaron J (2010) On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid. Cellulose 17:987–1004. doi:10.1007/s10570-010-9430-x CrossRefGoogle Scholar
  41. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494. doi:10.1007/s10570-010-9405-y CrossRefGoogle Scholar
  42. Tercjak A, Gutierrez J, Barud HS, Domeneguetti RR, Ribeiro SJL (2015) Nano- and macroscale structural and mechanical properties of in situ synthesized bacterial cellulose/PEO-b-PPO-b-PEO biocomposites. ACS Appl Mater Interfaces 7:4142–4150. doi:10.1021/am508273x CrossRefGoogle Scholar
  43. Tingaut P, Zimmermann T, Lopez-Suevos F (2010) Synthesis and characterization of bionanocomposites with tunable properties from poly(lactic acid) and acetylated microfibrillated cellulose. Biomacromolecules 11:454–464. doi:10.1021/bm901186u CrossRefGoogle Scholar
  44. Wang B, Sain M (2007) The effect of chemically coated nanofiber reinforcement on biopolymer based nanocomposites. Bioresources 2:371–388Google Scholar
  45. Wang S, Cheng Q, Rials TG, Lee SH (2006) Cellulose microfibril/nanofibril and its nanocompsites. The 8th Pacific rim bio-based composites symposium, Kuala Lumpur, Malaysia, 20–23. Forest Research Institute Malaysia, pp 301–308Google Scholar
  46. Xu X, Liu F, Jiang L, Zhu JY, Haagenson D, Wiesenborn DP (2013) Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5:2999–3009. doi:10.1021/am302624t CrossRefGoogle Scholar
  47. Xu X, Wang H, Jiang L, Wang X, Payne SA, Zhu JY, Li R (2014) Comparison between cellulose nanocrystal and cellulose nanofibril reinforced poly(ethylene oxide) nanofibers and their novel shish-kebab-like crystalline structures. Macromolecules 47:3409–3416. doi:10.1021/ma402627j CrossRefGoogle Scholar
  48. Zhou C, Chu R, Wu R, Wu Q (2011) Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures. Biomacromolecules 12:2617–2625. doi:10.1021/bm200401p CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Research Center for High Performance Polymer and Composite Systems (CREPEC), Chemical Engineering DepartmentPolytechnique MontrealMontrealCanada
  2. 2.CREPEC, Chemical Engineering DepartmentMcGill UniversityMontrealCanada
  3. 3.Faculty of ForestryUniversity of TorontoTorontoCanada
  4. 4.Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoCanada

Personalised recommendations