Skip to main content

Enzymatically fibrillated cellulose pulp-based monofilaments spun from water; enhancement of mechanical properties and water stability

Abstract

Water-based spinning dopes composed of enzymatically fibrillated pulp (EFP), poly(vinyl alcohol) and glutaraldehyde crosslinker were successfully spun into monofilaments. Specimens containing EFP concentrations of 50 and 60 wt% were obtained utilising a customised spinning system based on a syringe pump. Monofilaments exhibited high stiffness, good strength and low strain; maximum tensile values were obtained at a cellulose concentration of 60 wt%. Reduced graphene oxide was incorporated into the monofilaments as a lubricant, enhancing elongation while also providing a slight reinforcing effect. Mechanical behaviour was dictated by a synergy of competing interaction-types and mechanisms. Selected monofilaments were coated with cellulose acetate propionate, resulting in enhanced water strength and stability. The stability of the monofilaments was demonstrated in their ability to be tied into a knot, and to be used to prepare two- and three-dimensional structures.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Åkerholm M (2003) Ultrastructural aspects of pulp fibers as studided by dynamic FT-IR spectroscopy, Ph. D. Royal Institute of Technology, Stockholm, p 71

    Google Scholar 

  • Alqus R, Eichhorn SJ, Bryce RA (2015) Molecular dynamics of cellulose amphiphilicity at the graphene–water interface. Biomacromolecules 16:1771–1783

    CAS  Article  Google Scholar 

  • Ammar A, Al-Enizi AM, Al-Maadeed MA, Karim A (2016) Influence of graphene oxide on mechanical, morphological, barrier, and electrical properties of polymer membranes. Arab J Chem 9:274–286

    CAS  Article  Google Scholar 

  • Andrade GI, Barbosa-Stancioli E, Mansur AAP, Vasconcelos WL, Mansur HS (2007) Small-angle X-ray scattering and FTIR characterization of nanostructured poly(vinyl alcohol)/silicate hybrids for immunoassay applications. J Mater Sci 43:450–463

    Article  Google Scholar 

  • Berman D, Erdemir A, Sumant AV (2014) Graphene: a new emerging lubricant. Mater Today 17:31–42

    CAS  Article  Google Scholar 

  • Bjurnstedt A, Lärneklint F (2004) 3D biocomposites for automotive interior parts, M. Sc. Luleå University of Technology, Luleå, p 84

    Google Scholar 

  • Chang C, Lue A, Zhang L (2008) Effects of crosslinking methods on structure and properties of cellulose/PVA hydrogels. Macromol Chem Phys 209:1266–1273

    CAS  Article  Google Scholar 

  • Colom X, Carrillo F (2002) Crystallinity changes in lyocell and viscose-type fibres by caustic treatment. Eur Polym J 38:2225–2230

    CAS  Article  Google Scholar 

  • Cutter AG (2008) Development and characterization of renewable resource-based structural composite materials, M. Sc. University of California, Oakland, p 256

    Google Scholar 

  • da Silva Gomes G, de AlmeidaI AT, Kosaka PM, Rogero SO, Cruz AS, Ikeda TI, Petri DFS (2007) Cellulose acetate propionate coated titanium: characterization and biotechnological application. Mater Res 10:469–474

    Article  Google Scholar 

  • Dantas PA, Botaro VR (2012) Synthesis and characterization of a new cellulose acetate-propionate gel: crosslinking density determination. Open J Polym Chem 2:144–151

    CAS  Article  Google Scholar 

  • Dias CR, Rosa MJ, de Pinho MN (1998) Structure of water in asymmetric cellulose ester membranes—and ATR-FTIR study. J Membr Sci 138:259–267

    CAS  Article  Google Scholar 

  • dos Reis EF, Campos FS, Lage AP, Leite RC, Heneine LG, Vasconcelos WL, LobatoI ZIP, Mansur HS (2006) Synthesis and characterization of poly(vinyl alcohol) hydrogels and hybrids for rMPB70 protein adsorption. Mater Res 9:185–191

    Article  Google Scholar 

  • Edgar KJ, Buchanan CM, Debenham JS, Rundquist PA, Seiler BD, Shelton MC, Tindall D (2001) Advances in cellulose ester performance and application. Prog Polym Sci 26:1605–1688

    CAS  Article  Google Scholar 

  • Eyholzer C, Bordenau N, Lopez-Suevos F, Rentsch D, Zimmermann T, Oksman K (2010) Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form. Cellulose 17:19–30

    CAS  Article  Google Scholar 

  • Gericke M, Fardim P, Heinze T (2012) Ionic liquids—promising but challenging solvents for homogeneous derivatization of cellulose. Molecules 17:7458–7502

    Article  Google Scholar 

  • Gilardi G, Abis L, Cass AEG (1995) Carbon-13 CP/MAS solid-state NMR and FT-IR spectroscopy of wood cell wall biodegradation. Enzyme Microbial Technol 17:268–275

    CAS  Article  Google Scholar 

  • Haigler C, Grimson M, Gervais J, Le Moigne N, Höfte H, Monasse B, Navard P (2014) Molecular modeling and imaging of initial stages of cellulose fibril assembly: evidence for a disordered intermediate stage. PLoS ONE 9:1–10

    Article  Google Scholar 

  • Hämmerle F (2011) The cellulose gap (the future of cellulose fibres). Lenzing Ber 89:12–21

    Google Scholar 

  • Hikichi K, Yasuda M (1987) Two-dimensional 1H and 13C nuclear magnetic resonance studies of poly(vinyl alcohol). Polym J 19:1003–1012

    CAS  Article  Google Scholar 

  • Isik M, Sardon H, Mecerreyes D (2014) Ionic liquids and cellulose: dissolution, chemical modification and preparation of new cellulosic materials. Int J Mol Sci 15:11922–11940

    CAS  Article  Google Scholar 

  • Jones A, Zeller M, Sharma S (2013) Thermal, mechanical, and moisture absorption properties of egg white protein bioplastics with natural rubber and glycerol. Prog Biomater 2:12

    Article  Google Scholar 

  • Kabiri R, Namazi H (2014) Nanocrystalline cellulose acetate (NCCA)/graphene oxide (GO) nanocomposites with enhanced mechanical properties and barrier against water vapor. Cellulose 21:3527–3539

    CAS  Article  Google Scholar 

  • Kanis LA, Marques EL, Zepon KM, Pereira JR, Pamato S, de Oliveira MT, Danielski LG, Petronilho FC (2014) Cellulose acetate butyrate/poly(caprolactonetriol) blends: miscibility, mechanical properties, and in vivo inflammatory response. J Biomater Appl 29:654–661

    CAS  Article  Google Scholar 

  • Kono H, Yunoki S, Shikano T, Fujiwara F, Erata T, Takai M (2002) CP/MAS 13C NMR study of cellulose and cellulose derivatives. 1. Complete assignment of the CP/MAS 13C NMR spectrum of the native cellulose. J Am Chem Soc 124:7506–7511

    CAS  Article  Google Scholar 

  • Lai S, Casu M, Saba G, Lai A, Husu I, Masci G, Crescenzi V (2002) Solid-state 13C NMR study of poly(vinyl alcohol) gels. Solid State Nucl Magn Reson 21:187–196

    CAS  Article  Google Scholar 

  • Li Y, Zhu H, Zhu S, Wan J, Liu Z, Vaaland O, Lacey S, Fang Z, Dai H, Li T, Hu L (2015) Hybridizing wood cellulose and graphene oxide toward high-performance fibers. NPG Asia Mater 7:e150

    CAS  Article  Google Scholar 

  • Lim KY, Seong YJ, Kim BC (2003) Reduction of fibrillation of lyocell fiber with cellulose-g-poly(vinyl alcohol) copolymer. Polym J 35:691–696

    CAS  Article  Google Scholar 

  • Liu J, Li Q, Su Y, Yue Q, Gao B, Wang R (2013) Synthesis of wheat straw cellulose-g-poly(potassium acrylate)/PVA semi-IPNs superabsorbent resin. Carbohydr Polym 94:539–546

    CAS  Article  Google Scholar 

  • Luong ND, Pahimanolis N, Hippi U, Korhonen JT, Ruokolainen J, Johansson L, Nam J, Seppala J (2011) Graphene/cellulose nanocomposite paper with high electrical and mechanical performances. J Mater Chem 21:13991–13998

    Article  Google Scholar 

  • Mandal A, Chakrabarty D (2015) Characterization of nanocellulose reinforced semi-interpenetrating polymer network of poly(vinyl alcohol) and polyacrylamide composite films. Carbohydr Polym 134:240–250

    CAS  Article  Google Scholar 

  • Mansur HS, Sadahira CM, Souza AN, Mansur AAP (2008) FTIR spectroscopy characterization of poly(vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater Sci Eng C 28:539–548

    CAS  Article  Google Scholar 

  • Masuda K, Kaji H, Horii F (2001) Solid-state 13C NMR and 1H CRAMPS investigations of the hydration process and hydrogen bonding for poly(vinyl alcohol) films. Polym J 33:356–363

    CAS  Article  Google Scholar 

  • Materials Today (December 2013) From cellulose to textile fiber. http://www.materialstoday.com/biomaterials/news/from-cellulose-to-textile-fiber/ Accessed 25 Aug 2016

  • Pan Y, Peng C, Wang W, Shi K, Liu Z, Ji X (2014) Preparation and absorption behavior to organic pollutants of macroporous hydrophobic polyvinyl alcohol-formaldehyde sponges. RSC Adv 4:35620–35628

    CAS  Article  Google Scholar 

  • Pere JJ, Kemppainen K, Hilyunen J (2015) High consistency fibrillation of pulps with enzymes—benefits and application foresights. 249th American Chemical Society National Meeting and Exposition, 22–26 March, Denver, USA

  • Poletto M, Ornaghi LH, Zattera JA (2014) Native cellulose: structure, characterization and thermal properties. Materials 7:6105–6119

    CAS  Article  Google Scholar 

  • Qi X, Yao X, Deng S, Zhou T, Fu Q (2014) Water-induced shape memory effect of graphene oxide reinforced polyvinyl alcohol nanocomposites. J Mater Chem A 2:2240–2249

    CAS  Article  Google Scholar 

  • Samyn P (2013) Wetting and hydrophobic modification of cellulose surfaces for paper applications. J Mater Sci 48:6455–6498

    CAS  Article  Google Scholar 

  • Shen L, Patel M (2010) Life cycle assessment of man-made cellulose fibres. Lenzing Ber 88:1–59

    CAS  Google Scholar 

  • Shuai C, Feng P, Gao C, Shuai X, Xiao T, Peng S (2015) Graphene oxide reinforced poly(vinyl alcohol): nanocomposite scaffolds for tissue engineering applications. RSC Adv 5:25416–25423

    CAS  Article  Google Scholar 

  • Singh E, Thomas AV, Mukherjee R, Mi X, Houshmand F, Peles Y, Shi Y, Koratkar N (2013) Graphene drape minimizes the pinning and hysteresis of water drops on nanotextured rough surfaces. ACS Nano 7:3512–3521

    CAS  Article  Google Scholar 

  • Song J, Rojas O (2013) Approaching super-hydrophobicity from cellulosic materials: a review. Nord Pulp Pap Res J 28:216–238

    CAS  Article  Google Scholar 

  • Spoljaric S, Salminen A, Nguyen L, Seppälä J (2013) Crosslinked nanofibrillated cellulose: poly(acrylic acid) nanocomposite films; enhanced mechanical performance in aqueous environments. Cellulose 20:2991–3005

    CAS  Article  Google Scholar 

  • Spoljaric S, Salminen A, Luong ND, Seppälä J (2014) Stable, self-healing hydrogels from nanofibrillated cellulose, poly(vinyl alcohol) and borax via reversible crosslinking. Eur Polym J 56:105–117

    CAS  Article  Google Scholar 

  • Spoljaric S, Salminen A, Luong ND, Seppala J (2015) Elastic, crosslinked poly(acrylic acid) filaments: nanocellulose reinforcement and graphene lubrication. RSC Adv 5:107992–108001

    CAS  Article  Google Scholar 

  • Swerin A, Ödberg L, Lindström T (1990) Deswelling of hardwood kraft pulp fibers by cationic polymers. The effect on wet pressing and sheet properties. Nord Pulp Pap Res J 4:188–196

    Article  Google Scholar 

  • Wanasekara ND, Michud A, Zhu C, Rahatekar S, Sixta H, Eichhorn SJ (2016) Deformation mechanisms in ionic liquid spun cellulose fibers. Polymer 99:222–230

    CAS  Article  Google Scholar 

  • Wang R, Wang Q, Li L (2003) Evaporation behaviour of water and its plasticizing effect in modified poly(vinyl alcohol) systems. Polym Int 52:1820–1826

    CAS  Article  Google Scholar 

  • Wang M, Olszewska A, Walther A, Malho J, Schacher FH, Ruokolainen J, Ankerfors M, Laine J, Berglund LA, Österberg M, Ikkala O (2011) Colloidal ionic assembly between anionic native cellulose nanofibrils and cationic block copolymer micelles into biomimetic nanocomposites. Biomacromolecules 12:2074–2081

    CAS  Article  Google Scholar 

  • Wang B, Lou W, Wang X, Hao J (2012) Relationship between dispersion state and reinforcement effect of graphene oxide in microcrystalline cellulose-graphene oxide composite films. J Mater Chem 22:12859–12866

    CAS  Article  Google Scholar 

  • Whipple EB, Ruta M (1974) Structure of aqueous glutaraldehyde. J Org Chem 39:1666–1668

    CAS  Article  Google Scholar 

  • Wu N, She X, Yang D, Wu X, Su F, Chen Y (2012) Synthesis of network reduced graphene oxide in polystyrene matrix by a two-step reduction method for superior conductivity of the composite. J Mater Chem 22:17254–17261

    CAS  Article  Google Scholar 

  • Zhu C, Richardson RM, Potter KD, Koutsomitopoulou AF, van Duijneveldt JS, Vincent SR, Wanasekara ND, Eichhorn SJ, Rahatekar SS (2016) High modulus regenerated cellulose fibers spun from a low molecular weight microcrystalline cellulose solution. ACS Sustain Chem Eng 4:4545–4553

    CAS  Article  Google Scholar 

  • Zikeli S (1997) Process of and apparatus for making cellulose products. US Patent 5589125A

Download references

Acknowledgments

This work was conducted as part of the Design Driven Value Chains in the World of Cellulose (DWoC) project. The authors wish to thank Tekes (Finnish Funding Agency for Technology and Innovation) for financial support. This work made use of Aalto University Bioeconomy and Aalto University Nanomicroscopy Centre (Aalto-NMC) facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jukka Seppälä.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 27 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Spoljaric, S., Auvinen, H., Orelma, H. et al. Enzymatically fibrillated cellulose pulp-based monofilaments spun from water; enhancement of mechanical properties and water stability. Cellulose 24, 871–887 (2017). https://doi.org/10.1007/s10570-016-1133-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-1133-5

Keywords

  • Cellulose
  • Mechanical properties
  • Water stability
  • Poly(vinyl alcohol)
  • Filament