Skip to main content
Log in

Novel aqueous spongy foams made of three-dimensionally dispersed wood-fiber: entrapment and stabilization with NFC/MFC within capillary foams

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

This article describes the preparation of novel aqueous spongy foams that are composed of three-dimensionally distributed wood-fiber networks stabilized with nanofibrillate cellulose (NFC) and/or microfibrillated cellulose (MFC). The free standing aqueous spongy foams were prepared with the entrapment of NFC and/or MFC—stabilized air-in-water (A/W) capillary foams using “gel trapping technique”. The stability of spongy foams could be controlled by manipulating the volume fraction of NFC and/or MFC and a secondary liquid immiscible with the continuous phase of the NFC and/or MFC suspension. Possible morphology and mechanical distribution of NFC and/or MFC within spongy foams were verified with optical microscope, SEM, and functional load-bearing method. Owing to three-dimensionally dispersed wood-fiber structure, ultra-lightweight (0.01–0.06 g/cm3), high porosity (>90%), and microporous (10–80 μm), the NFC and/or MFC reinforced spongy foams, improved compressional strength-vertical direction obviously, from 0.0 to more than 13.78 kPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akartuna I, Studart AR, Tervoort E, Gonzenbach UT, Gauckler LJ (2008) Stabilization of oil-in-water emulsions by colloidal particles modified with short amphiphiles. Langmuir ACS J Surf Colloids 24:7161–7168

    Article  CAS  Google Scholar 

  • Ali ZM, Gibson LJ (2013) The structure and mechanics of nanofibrillar cellulose foams. Soft Matter 9:1580–1588. doi:10.1039/c2sm27197d

    Article  CAS  Google Scholar 

  • Al-Qararah AM, Hjelt T, Koponen A, Harlin A, Ketoja JA (2013) Bubble size and air content of wet fibre foams in axial mixing with macro-instabilities. Colloids Surf A Physicochem Eng Asp 436:1130–1139. doi:10.1016/j.colsurfa.2013.08.051

    Article  CAS  Google Scholar 

  • Baillis D, Coquard R, Moura LM (2015) Heat transfer in cellulose-based aerogels: analytical modelling and measurements. Energy 84:732–744. doi:10.1016/j.energy.2015.03.039

    Article  Google Scholar 

  • Cervin NT, Andersson L, Ng JB, Olin P, Bergstrom L, Wagberg L (2013) Lightweight and strong cellulose materials made from aqueous foams stabilized by nanofibrillated cellulose. Biomacromolecules 14:503–511. doi:10.1021/bm301755u

    Article  CAS  Google Scholar 

  • Chen L, Rende D, Schadler LS, Ozisik R (2013) Polymer nanocomposite foams. J Mater Chem A 1:3837. doi:10.1039/c2ta00086e

    Article  CAS  Google Scholar 

  • Demitri C, Giuri A, Raucci MG, Giugliano D, Madaghiele M, Sannino A, Ambrosio L (2014) Preparation and characterization of cellulose-based foams via microwave curing. Interface Focus 4:20130053. doi:10.1098/rsfs.2013.0053

    Article  Google Scholar 

  • Denkov N, Ivanov I, Kralchevsky P, Wasan D (1992) A possible mechanism of stabilization of emulsions by solid particles. J Colloid Interface Sci 150:589–593

    Article  CAS  Google Scholar 

  • Dittmann J, Koos E, Willenbacher N (2013) Ceramic capillary suspensions: novel processing route for macroporous ceramic materials. J Am Ceram Soc 96:391–397

    CAS  Google Scholar 

  • Dorcheh AS, Abbasi M (2008) Silica aerogel; synthesis, properties and characterization. J Mater Process Technol 199:10–26

    Article  Google Scholar 

  • Fernandez JE (2007) Materials for aesthetic, energy-efficient, and self-diagnostic buildings. Science 315:1807–1810. doi:10.1126/science.1137542

    Article  CAS  Google Scholar 

  • Gonzenbach UT, Studart AR, Tervoort E, Gauckler LJ (2007) Macroporous ceramics from particle-stabilized wet foams. J Am Ceram Soc 90:16–22. doi:10.1111/j.1551-2916.2006.01328.x

    Article  CAS  Google Scholar 

  • Heydarifard S, Nazhad MM, Xiao H, Shipin O, Olson J (2016) Water-resistant cellulosic filter for aerosol entrapment and water purification, Part I: production of water-resistant cellulosic filter. Environ Technol. doi:10.1080/09593330.2015.1130174

    Google Scholar 

  • Hoffmann S, Koos E, Willenbacher N (2014) Using capillary bridges to tune stability and flow behavior of food suspensions. Food Hydrocoll 40:44–52

    Article  CAS  Google Scholar 

  • Jabbari M, Akesson D, Skrifvars M, Taherzadeh MJ (2015) Novel lightweight and highly thermally insulative silica aerogel-doped poly(vinyl chloride)-coated fabric composite. J Reinf Plast Compos 34:1581–1592. doi:10.1177/0731684415578306

    Article  CAS  Google Scholar 

  • Jelle BP (2011) Traditional, state-of-the-art and future thermal building insulation materials and solutions—properties, requirements and possibilities. Energy Build 43:2549–2563. doi:10.1016/j.enbuild.2011.05.015

    Article  Google Scholar 

  • Koos E (2014) Capillary suspensions: particle networks formed through the capillary force. Curr Opin Colloid Interface Sci 19:575–584. doi:10.1016/j.cocis.2014.10.004

    Article  CAS  Google Scholar 

  • Koos E, Willenbacher N (2011) Capillary forces in suspension rheology. Science 331:897–900

    Article  CAS  Google Scholar 

  • Lehmonen J, Jetsu P, Kinnunen K, Hjelt T (2013) Potential of foam-laid forming technology in paper applications. Nord Pulp Pap Res J 28:392–398

    Article  CAS  Google Scholar 

  • Liu X, Fatehi P, Ni Y (2011) Adsorption of lignocellulosic materials dissolved in pre-hydrolysis liquor of kraft-based dissolving pulp production process on polymer-modified activated carbons. J Sci Technol Prod Proc 1(1):46–54

    CAS  Google Scholar 

  • Madani A, Zeinoddini S, Varahmi S, Turnbull H, Phillion AB, Olson JA, Martinez DM (2014) Ultra-lightweight paper foams: processing and properties. Cellulose 21:2023–2031. doi:10.1007/s10570-014-0197-3

    Article  CAS  Google Scholar 

  • Nam YS, Park TG (1999) Biodegradable polymeric microcellular foams by modified thermally induced phase separation method. Biomaterials 20:1783–1790

    Article  CAS  Google Scholar 

  • Paunov VN (2003) Novel method for determining the three-phase contact angle of colloid particles adsorbed at air-water and oil-water interfaces. Langmuir ACS J Surf Colloids 19:7970–7976

    Article  CAS  Google Scholar 

  • Pham TN et al (2014) Industrially benign super-compressible piezoresistive carbon foams with predefined wetting properties: from environmental to electrical applications. Sci Rep 4:6933. doi:10.1038/srep06933

    Article  CAS  Google Scholar 

  • Pouyan Jahangiri RK, Zeinoddini Sadaf S, Madani Ario, Sharma Yash, Andre Phillion D, Martinez Mark, Olson James A (2014) On filtration and heat insulation properties of foam formed cellulose based materials. Nord Pulp Pap Res J 29:584–591

    Article  Google Scholar 

  • Stocco A, Rio E, Binks BP, Langevin D (2011) Aqueous foams stabilized solely by particles. Soft Matter 7:1260–1267

    Article  CAS  Google Scholar 

  • Tasset S, Cathala B, Bizot H, Capron I (2014) Versatile cellular foams derived from CNC-stabilized pickering emulsions. RSC Adv 4:893–898. doi:10.1039/c3ra45883k

    Article  CAS  Google Scholar 

  • Tzoumaki MV, Karefyllakis D, Moschakis T, Biliaderis CG, Scholten E (2015) Aqueous foams stabilized by chitin nanocrystals. Soft Matter 11:6245–6253

    Article  CAS  Google Scholar 

  • Wang Q, Liu S, Yang G, Chen J, Ni Y (2015) Cationic polyacrylamide enhancing cellulase treatment efficiency of hardwood kraft-based dissolving pulp. Bioresour Technol 183:42–46. doi:10.1016/j.biortech.2015.02.011

    Article  CAS  Google Scholar 

  • Wege HA, Kim S, Paunov VN, Zhong Q, Velev OD (2008) Long-term stabilization of foams and emulsions with in situ formed microparticles from hydrophobic cellulose. Langmuir ACS J Surf Colloids 24:9245–9253

    Article  CAS  Google Scholar 

  • Wei G, Liu Y, Zhang X, Yu F, Du X (2011) Thermal conductivities study on silica aerogel and its composite insulation materials. Int J Heat Mass Transf 54:2355–2366

    Article  CAS  Google Scholar 

  • Wicklein B, Kocjan A, Salazar-Alvarez G, Carosio F, Camino G, Antonietti M, Bergström L (2015) Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat Nanotechnol 10:277–283

    Article  CAS  Google Scholar 

  • Zhang Y, Wu J, Wang H, Meredith JC, Behrens SH (2014) Stabilization of liquid foams through the synergistic action of particles and an immiscible liquid. Angew Chem 53:13385–13389. doi:10.1002/anie.201405816

    Article  CAS  Google Scholar 

  • Zhang Y, Allen MC, Zhao R, Deheyn DD, Behrens SH, Meredith JC (2015) Capillary foams: stabilization and functionalization of porous liquids and solids. Langmuir ACS J Surf colloids 31:2669–2676. doi:10.1021/la504784h

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to NSERC Strategic Network—Innovative Green Wood Fibre Products (Canada) and Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control (China) for part of funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huining Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Lu, P., Xiao, H. et al. Novel aqueous spongy foams made of three-dimensionally dispersed wood-fiber: entrapment and stabilization with NFC/MFC within capillary foams. Cellulose 24, 241–251 (2017). https://doi.org/10.1007/s10570-016-1103-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-1103-y

Keywords

Navigation