Skip to main content
Log in

Synthesis of core–shell structured Fe3O4@carboxymethyl cellulose magnetic composite for highly efficient removal of Eu(III)

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this work, a carboxymethyl cellulose (CMC)-modified Fe3O4 (denoted as Fe3O4@CMC) composite was synthesized via a simple co-precipitation approach. Fourier transform infrared spectroscopy, zeta potential and thermogravimetric analysis results indicated that CMC was successfully coated on the Fe3O4 surfaces with a weight percent of ~30 % (w/w). The prepared Fe3O4@CMC composite was stable in acidic solution and could be easily collected with the aid of an external magnet. A batch technique was adopted to check the ability of the Fe3O4@CMC composite to remove Eu(III) as a function of various environmental parameters such as contact time, solution pH, ionic strength, solid content and temperature. The sorption kinetics process achieved equilibrium within a contact time of 7 h. The sorption isotherms were well simulated by the Langmuir model, and the maximum sorption capacity at 293 K was calculated to be 2.78 × 10−4 mol/g, being higher than the series of adsorbent materials reported to date. The ionic strength-independent sorption behaviors, desorption experiments by using ammonium acetate and disodium ethylenediamine tetraacetate as well as the spectroscopic characterization suggested that Eu(III) was sequestrated on the hydroxyl and carboxyl sites of Fe3O4@CMC via inner-sphere complexation. Overall, the Fe3O4@CMC composite could be utilized as a cost-effective adsorbent for the removal of trivalent lanthanide/actinides (e.g., 152+154Eu, 241Am and 244Cm) from radioactive wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Akhavan O, Ghaderi E (2010) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4:5731

    Article  CAS  Google Scholar 

  • Baltrusaitis J, Jensen JH, Grassian VH (2006) FTIR spectroscopy combined with isotope labeling and quantum chemical calculations to investigate adsorbed bicarbonate formation following reaction of carbon dioxide with surface hydroxyl groups on Fe2O3 and Al2O3. J Phys Chem B 110:12005

    Article  CAS  Google Scholar 

  • Başarır SS, Bayramgil NP (2013) The uranium recovery from aqueous solutions using amidoxime modified cellulose derivatives. IV. Recovery of uranium by amidoximated hydroxypropyl methylcellulose. Cellulose 20:827

    Article  Google Scholar 

  • Bulut E, Öacar M, Şengil IA (2008) Adsorption of malachite green onto bentonite: equilibrium and kinetic studies and process design. Microporous Mesoporous Mater 115:234

    Article  CAS  Google Scholar 

  • Cai YW, Ren XM, Lang Y, Liu ZY, Zong PF, Wang XK, Yang ST (2015) Sequestration and speciation of Eu(III) on gamma alumina: role of temperature and contact order. Environ Sci Process Impacts 17:1904

    Article  CAS  Google Scholar 

  • Chang YC, Chen DH (2005) Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu(II) ions. J Colloid Interface Sci 283:446

    Article  CAS  Google Scholar 

  • Chang HX, Wu HK (2013) Graphene-based nanocomposites: preparation, functionalization, and energy and environmental applications. Energy Environ Sci 6:3483

    Article  CAS  Google Scholar 

  • Chen AH, Yang CY, Chen CY, Chen CY, Chen CW (2009) The chemically crosslinked metal-complexed chitosans for comparative adsorptions of Cu(II), Zn(II), Ni(II) and Pb(II) ions in aqueous medium. J Hazard Mater 163:1068

    Article  CAS  Google Scholar 

  • Chen H, Shao DD, Li JX, Wang XK (2014) The uptake of radionuclides from aqueous solution by poly(amidoxime) modified reduced graphene oxide. Chem Eng J 254:623

    Article  CAS  Google Scholar 

  • Chiou MS, Li HY (2003) Adsorption behavior of reactive dye in aqueous solution on chemical cross-linked chitosan beads. Chemosphere 50:1095

    Article  CAS  Google Scholar 

  • Dogsa I, Tomšič M, Orehek J, Benigar E, Jamnik A, Stopar D (2014) Amorphous supramolecular structure of carboxymethyl cellulose in aqueous solution at different pH values as determined by rheology, small angle X-ray and light scattering. Carbohydr Polym 111:492

    Article  CAS  Google Scholar 

  • Fan QH, Shao DD, Hu J, Chen CL, Wu WS, Wang XK (2009a) Adsorption of humic acid and Eu(III) to multi-walled carbon nanotubes: effect of pH, ionic strength and counterion effect. Radiochim Acta 97:1

    Article  Google Scholar 

  • Fan Q, Tan XL, Li JH, Wang XK, Wu WS, Montavon G (2009b) Sorption of Eu(III) on attapulgite studied by batch, XPS, and EXAFS techniques. Environ Sci Technol 43:5776

    Article  CAS  Google Scholar 

  • Fukami J, Yonemochi E, Yoshihashi Y, Terada K (2009) Evaluation of rapidly disintegrating tablets containing glycine and carboxymethylcellulose. Int J Pharm 9:101

    Google Scholar 

  • Fukushi K, Hasegawa Y, Maeda K, Aoi Y, Tamura A, Arai S, Yamamoto Y, Aosai D, Mizuno T (2013) Sorption of Eu(III) on granite: EPMA, LA-ICP-572 MS, batch and modeling studies. Environ Sci Technol 47:12811

    Article  CAS  Google Scholar 

  • Gao Y, Kan AT, Tomson MB (2003) Critical evaluation of desorption phenomena of heavy metals from natural sediments. Environ Sci Technol 37:5566

    Article  CAS  Google Scholar 

  • Geckeis H, Lützenkirchen J, Polly R, Rabung T, Schmidt M (2013) Mineral–water interface reactions of actinides. Chem Rev 113:1016

    Article  CAS  Google Scholar 

  • Guo ZQ, Li Y, Pan SH, Xu JZ (2015) Fabrication of Fe3O4@cyclodextrin magnetic composite for the high-efficient removal of Eu(III). J Mol Liq 206:272

    Article  CAS  Google Scholar 

  • Ho YS, McKay G (1999a) Pseudo-second order model for sorption processes. Process Biochem 34:451

    Article  CAS  Google Scholar 

  • Ho YS, McKay G (1999b) A kinetic study of dye sorption by biosorbent waste product pith. Resour Conserv Recycl 25:171

    Article  Google Scholar 

  • Ho YS, Ofomaja AE (2006) Pseudo-second-order model for lead ion sorption from aqueous solutions onto palm kernel fiber. J Hazard Mater B 129:137

    Article  CAS  Google Scholar 

  • Hokkanen S, Repo E, Suopajärvi T, Liimatainen H, Niinimaa J, Sillanpää M (2014) Adsorption of Ni(II), Cu(II) and Cd(II) from aqueous solutions by amino modified nanostructured microfibrillated cellulose. Cellulose 21:1471

    Article  CAS  Google Scholar 

  • Ibrahim AA, Adel AM, EI-Wahab ZHA, AIShemy MT (2011) Utilization of carboxymethyl cellulose based on bean hulls as chelating agent. Synthesis, characterization and biological activity. Carbohydr Polym 83:94

    Article  CAS  Google Scholar 

  • Karthik R, Meenakshi S (2015) Removal of Pb(II) and Cd(II) ions from aqueous solution using polyaniline grafted chitosan. Chem Eng J 263:168

    Article  CAS  Google Scholar 

  • Kaur M, Zhang HJ, Martin L, Todd T, Qiang Y (2013) Conjugates of magnetic nanoparticle actinide specific chelator for radioactive waste separation. Environ Sci Technol 47:11942

    Article  CAS  Google Scholar 

  • Lagoa R, Rodrigues JR (2007) Evaluation of dry protonated calcium alginate beads for biosorption applications and studies of lead uptake. Appl Biochem Biotechnol 143:115

    Article  CAS  Google Scholar 

  • Lamelas C, Avaltroni F, Benedetti M, Wilkinson KJ, Slaveykova VI (2005) Quantifying Pb and Cd complexation by alginates and the role of metal binding on macromolecular aggregation. Biomacromolecules 6:2756

    Article  CAS  Google Scholar 

  • Li Y, Sheng GD, Sheng J (2014) Magnetite decorated graphene oxide for the highly efficient immobilization of Eu(III) from aqueous solution. J Mol Liq 199:474

    Article  CAS  Google Scholar 

  • Lin R, Li A, Lu LB, Cao Y (2015) Preparation of bulk sodium carboxymethyl cellulose aerogels withtunable morphology. Carbohydr Polym 118:126

    Article  CAS  Google Scholar 

  • Liu JF, Zhao ZS, Jiang GB (2008) Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ Sci Technol 42:6949

    Article  CAS  Google Scholar 

  • Mahmoud MR, Someda HH (2012) Mg-Al layered double hydroxide intercalated with sodium lauryl sulfate as a sorbent for Eu152+154 from aqueous solutions. J Radioanal Nucl Chem 292:1391

    Article  CAS  Google Scholar 

  • Matthew B, Daniel E, Michael G, James D (2015) Carboxylated cellulose polymers for use in hydraulic fracturing operations. WIPO Patent WO/2015/123563A1 2015-08-20

  • Ngomsik AF, Bee A, Talbot D, Cote G (2012) Magnetic solid–liquid extraction of Eu(III), La(III), Ni(II) and Co(II) with maghemite nanoparticles. Sep Purif Technol 86:1

    Article  CAS  Google Scholar 

  • Obeid L, El Kolli N, Talbot D, Abramson S, Welschbillig M, Cabuil V, Bée A (2014) Adsorption of a cationic surfactant by a magsorbent based on magnetic alginate beads. J Colloid Interface Sci 432:182

    Article  CAS  Google Scholar 

  • Qiu L, Shao ZQ, Wang DX, Wang FJ, Wang WJ, Wang JQ (2014) Carboxymethyl cellulose lithium (CMC-Li) as a novel binder and its electrochemical performance in lithium-ion batteries. Cellulose 21:2789

    Article  CAS  Google Scholar 

  • Rajput S, Pittman CU, Mohan D (2016) Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chroium (Cr6+) removal from water. J Colloid Interface Sci 468:334

    Article  CAS  Google Scholar 

  • Saeed MM (2003) Adsorption profile and thermodynamic parameters of the preconcentration of Eu(III) on 2-thenoyltrifluoroacetone loaded polyurethane (PUR) foam. J Radioanal Nucl Chem 256:73

    Article  CAS  Google Scholar 

  • Sankararamakrishnan N, Jaiswal M, Verma N (2014) Composite nanofloral clusters of carbon nanotubes and activated alumina: an efficient sorbent for heavy metal removal. Chem Eng J 235:1

    Article  CAS  Google Scholar 

  • Sheng GD, Dong HP, Shen RP, Li YM (2013) Microscopic insights into the temperature-dependent adsorption of Eu(III) onto titanate nanotubes studied by FTIR, XPS, XAFS and batch technique. Chem Eng J 217:486

    Article  CAS  Google Scholar 

  • Sheng GD, Yang Q, Peng F, Li H, Gao X, Huang YY (2014) Determination of colloidal pyrolusite, Eu(III) and humic substance interaction: a combined batch and EXAFS approach. Chem Eng J 245:10

    Article  CAS  Google Scholar 

  • Shukla A, Zhang YH, Dubey P, Margrave JL, Shukla SS (2002) The role of sawdust in the removal of unwanted materials from water. J Hazard Mater 95:137

    Article  CAS  Google Scholar 

  • Singh V, Ahmad S (2012) Synthesis and characterization of carboxymethyl cellulose-silver nanoparticle (AgNp)-silica hybrid for amylase immobilization. Cellulose 19:1759

    Article  CAS  Google Scholar 

  • Sitthichai S, Pilapong C, Thongtem T, Thongtem S (2015) CMC-coated Fe3O4 nanoparticles as new MRI probes for hepatocellular carcinoma. Appl Surf Sci 356:972

    Article  CAS  Google Scholar 

  • Sun YB, Chen CL, Tan XL, Shao DD, Li JX, Zhao GX, Yang SB, Wang Q, Wang XK (2012) Enhanced adsorption of Eu(III) on mesoporous Al2O3/expanded graphite composites investigated by macroscopic and microscopic techniques. Dalton Trans 41:13388

    Article  CAS  Google Scholar 

  • Sun YB, Shao DD, Chen CL, Yang SB, Wang XK (2013) Highly efficient enrichment of radionuclides on graphene oxide-supported polyaniline. Environ Sci Technol 47:9904

    Article  CAS  Google Scholar 

  • Sun YB, Wu ZY, Wang XX, Ding CC, Cheng WC, Yu SH, Wang XK (2016) Macroscopic and microscopic investigation of U(VI) and Eu(III) adsorption on carbonaceous nanofibers. Environ Sci Technol 50:4459

    Article  CAS  Google Scholar 

  • Tan XL, Fang M, Li JX, Lu Y, Wang XK (2009) Adsorption of Eu(III) onto TiO2: effect of pH, concentration, ionic strength and soil fulvic acid. J Hazard Mater 168:458

    Article  CAS  Google Scholar 

  • Tan XL, Ren XM, Chen CL, Wang XK (2014) Analytical approaches to the speciation of lanthanides at solid–water interfaces. Trends Anal Chem 61:107

    Article  CAS  Google Scholar 

  • Tian GX, Martin LR, Rao LF (2010) Complexation of lactate with Neodymium(III) and Europium(III) at variable temperatures: studies by potentiometry, microcalorimetry, optical absorption, and luminescence spectroscopy. Inorg Chem 49:10598

    Article  CAS  Google Scholar 

  • Veliscek-Carolan J, Jolliffe KA, Hanley TL (2013) Selective sorption of actinides by titania nanoparticles covalently functionalized with simple organic ligands. ACS Appl Mater Interfaces 5:11984

    Article  CAS  Google Scholar 

  • Wang LY, Wang MJ (2016) Removal of heavy metal ions by poly(vinyl alcohol) and carboxymethyl cellulose composite hydrogels prepared by a freeze-thaw method. ACS Sustain Chem Eng 4:2830

    Article  CAS  Google Scholar 

  • Xie Y, Helvenston EM, Shuller-Nickles LC, Powell BA (2016) Surface complexation modeling of Eu(III) and U(VI) interactions with graphene oxide. Environ Sci Technol 50:1821

    Article  CAS  Google Scholar 

  • Xu XQ, Shen H, Xu JR, Xie MQ, Li XJ (2006) The colloidal stability and core–hell structure of magnetite nanoparticles coated with alginate. Appl Surf Sci 253:2158

    Article  CAS  Google Scholar 

  • Xu L, Zheng T, Yang ST, Zhang LJ, Wang JQ, Liu W, Chen LH, Diwu J, Chai ZF, Wang SA (2016a) Uptake mechanisms of Eu(III) on hydroxyapatite: a potential permeable reactive barrier backfill material for trapping trivalent minor actinides. Environ Sci Technol 50:3852

    Article  CAS  Google Scholar 

  • Xu SH, Zhao YG, Zheng FC, Zhang YG (2016b) Hollow Fe3O4@mesoporous carbon core–shell microspheres for efficient sorption of radionuclides. J Mater Sci 51:2550

    Article  CAS  Google Scholar 

  • Yang ST, Zhao DL, Zhang H, Lu SS, Chen L, Yu XJ (2010) Impact of environmental conditions on the sorption behavior of Pb(II) in Na-bentonite suspensions. J Hazard Mater 183:632

    Article  CAS  Google Scholar 

  • Yang ST, Zong PF, Ren XM, Wang Q, Wang XK (2012) Rapid and highly efficient preconcentration of Eu(III) by core–shell structured Fe3O4@humic acid magnetic nanoparticles. ACS Appl Mater Interfaces 4:6891

    Article  CAS  Google Scholar 

  • Yang K, Li YJ, Tan XF, Peng R, Liu Z (2013a) Behavior and toxicity of graphene and its functionalized derivatives in biological systems. Small 9:1492

    Article  CAS  Google Scholar 

  • Yang ST, Sheng GD, Montavon G, Guo ZQ, Tan XL, Grambow B, Wang XK (2013b) Investigation of Eu(III) immobilization on γ-Al2O3 surfaces by combining batch technique and EXAFS analyses: role of contact time and humic acid. Geochim Cosmochim Acta 121:84

    Article  CAS  Google Scholar 

  • Yang ST, Zong PF, Sheng GD, Ren XM, Huang YY, Wang XK (2014) New insight into Eu(III) sorption mechanism at alumina/water interface by batch technique and EXAFS analysis. Radiochim Acta 102(1–2):143

    CAS  Google Scholar 

  • Yang ST, Ren XM, Zhao GX, Shi WQ, Montavon G, Grambow B, Wang XK (2015) Competitive sorption and selective sequence of Cu(II) and Ni(II) on montmorillonite: batch, modeling, EPR and XAS studies. Geochim Cosmochim Acta 166:129

    Article  CAS  Google Scholar 

  • Yeasmin MS, Mondal MIH (2015) Synthesis of highly substituted carboxymethyl cellulose depending on cellulose particle size. Int J Biol Macromol 80:725

    Article  CAS  Google Scholar 

  • Zaki AA, El-Zakla T, Abed El Geleel M (2012) Modeling kinetics and thermodynamics of Cs+ and Eu3+ removal from waste solutions using modified cellulose acetate membranes. J Membr Sci 401–402:1

    Article  Google Scholar 

  • Zhang SX, Niu HY, Cai YQ, Zhao XL, Shi YL (2010) Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4. Chem Eng J 158:599

    Article  CAS  Google Scholar 

  • Zhivkov AM (2013) Electric properties of carboxymethyl cellulose. Chapter 8 in book Cellulose-fundamental aspects. ISBN 978-953-51-1183-2. 2013-08-28

  • Zhou LM, Wang YP, Liu ZR, Huang QW (2009) Characteristics of equilibrium, kinetics studies for adsorption of Hg(II), Cu(II), and Ni(II) ions by thiourea-modified magnetic chitosan microspheres. J Hazard Mater 161:995

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Yawen Cai and Fang Yuan contributed equally to this paper. Financial supports from the National Natural Science Foundation of China (41203086; 21422704; 41303006), the Science Foundation of Jiangsu Province (BK20140007), “Young Thousand Talented Program” in China, the Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection and the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shitong Yang or Shuao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Y., Yuan, F., Wang, X. et al. Synthesis of core–shell structured Fe3O4@carboxymethyl cellulose magnetic composite for highly efficient removal of Eu(III). Cellulose 24, 175–190 (2017). https://doi.org/10.1007/s10570-016-1094-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-1094-8

Keywords

Navigation