Correlation between structural properties and iridescent colors of cellulose nanocrystalline films

Abstract

We investigate the effect of shear flow applied during the drying of aqueous suspension of cellulose nanocrystals on optical reflective properties and structural characteristics of the resulting solidified films. Shear flow can significantly improve internal structural homogeneity of the films, while its effect on optical reflective properties is relatively minor. The measured width of the selective reflection peak is an order of magnitude larger than expected for an ideal helically modulated structure, which reflects a distribution of pitch values and possibly also of regimes of distorted helical modulation. We attribute these imperfections to the broad size distribution of the cellulose nanocrystals.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Beck S, Bouchard J, Berry R (2011) Controlling the reflection wavelength of iridescent solid films of nanocrystalline cellulose. Biomacromolecules 12:167–172. doi:10.1021/bm1010905

    CAS  Article  Google Scholar 

  2. Beck S, Bouchard J, Chauve G, Berry R (2013) Controlled production of patterns in iridescent solid films of cellulose nanocrystals. Cellulose 20:1401–1411. doi:10.1007/s10570-013-9888-4

    CAS  Article  Google Scholar 

  3. Belyakov VA (1992) Diffraction optics of complex-structured periodic media. Springer, New York

    Google Scholar 

  4. Bodiguel H, Leng J (2010) Imaging the drying of colloidal suspension. Soft Matter 6:5451–5460. doi:10.1039/C0SM00323A

    CAS  Article  Google Scholar 

  5. Chandrasekhar S (1992) Liquid crystals, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  6. Conley K, Godbout L, Whitehead MA, van de Ven TGM (2016) Origin of the twist of cellulosic materials. Carbohydr Polym 135:285–299. doi:10.1016/j.carbpol.2015.08.029

    CAS  Article  Google Scholar 

  7. Cranston ED, Gray DG (2008) Birefringence in spin-coated films containing cellulose nanocrystals. Colloids Surf A 325:44–51. doi:10.1016/colsurfa.2008.04.042

    CAS  Article  Google Scholar 

  8. Diaz JA, Wu X, Martini A, Youngblood JP, Moon RJ (2013) Thermal expansion of self-organized and shear-oriented cellulose nanocrystal films. Biomacromolecules 14:2900–2908. doi:10.1021/bm400794e

    CAS  Article  Google Scholar 

  9. Dumanli AG, van der Kooij HM, Kamita G, Reisner E, Baumberg JJ, Steiner U, Vignolini S (2014a) Digital color in cellulose nanocrystal films. ACS Appl Mater Interfaces 6:12302–12306. doi:10.1021/am501995e

    CAS  Article  Google Scholar 

  10. Dumanli AG, Kamita G, Landman J, van der Kooij H, Glover BJ, Baumberg JJ, Steiner U, Vignolini S (2014b) Controlled, bio-inspired self-assembly of cellulose-based chiral reflectors. Adv Opt Mater 2:646–650. doi:10.1002/adom.201400112

    CAS  Article  Google Scholar 

  11. Ebeling T, Paillet M, Borsali R, Diat O, Dufresne A, Cavaillé JY, Chanzy H (1999) Shear-induced orientational phenomena in suspensions of cellulose microcrystals, revealed by small angle X-ray scattering. Langmuir 15:6123–6126. doi:10.1021/la990046+

    CAS  Article  Google Scholar 

  12. Frka-Petesic B, Sugiyama J, Kimura S, Chanzy H, Maret G (2015) Negative diamagnetic anisotropy and birefringence of cellulose nanocrystals. Macromolecules 48:8844–8857. doi:10.1021/acs.macromol.5b02201

    CAS  Article  Google Scholar 

  13. Gebauer D, Oliynyk V, Salajkova M, Sort J, Zhou Q, Bergström L, Salazar-Alvarez G (2011) A transparent hybrid of nanocrystalline cellulose and amorphous calcium carbonate nanoparticles. Nanoscale 3:3563–3566. doi:10.1039/c1nr10681c

    CAS  Article  Google Scholar 

  14. Gray DG, Mu X (2015) Chiral nematic structure of cellulose nanocrystal suspensions and films; polarized light and atomic force microscopy. Materials 8:7873–7888. doi:10.3390/ma8115427

    Article  Google Scholar 

  15. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500. doi:10.1021/cr900339w

    CAS  Article  Google Scholar 

  16. Hoeger I, Rojas OJ, Efimenko K, Velev OD, Kelley SS (2011) Ultrathin film coatings of aligned cellulose nanocrystals from a convective-shear assembly system and their surface mechanical properties. Soft Matter 7:1957–1967. doi:10.1039/c0sm01113d

    CAS  Article  Google Scholar 

  17. Holt BL, Stoyanov SD, Pelan E, Paunov VN (2010) Novel anisotropic materials from functionalised colloidal cellulose and cellulose derivatives. J Mater Chem 20:10058–10070. doi:10.1039/c0jm0122g

    CAS  Article  Google Scholar 

  18. John WDS, Fritz WJ, Lu ZJ, Yang DK (1995) Bragg reflection from cholesteric liquid crystals. Phy Rev E 51:1191–1198

    Article  Google Scholar 

  19. Lagerwall JPF, Schütz C, Salajkova M, Noh JH, Park JH, Scalia G, Bergström L (2014) Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional films. NPG Asia Mater 6:e80. doi:10.1038/am.2013.69

    CAS  Article  Google Scholar 

  20. Liu D, Wang S, Ma Z, Tian D, Gu M, Lin F (2014) Structure-color mechanism of iridescent cellulose nanocrystal films. RCS Adv 4:39322–39331. doi:10.1039/c4ra06268j

    CAS  Google Scholar 

  21. Majoinen J, Kontturi E, Ikkala O, Gray DG (2012) SEM imaging of chiral nematic films cast from cellulose nanocrystal suspensions. Cellulose 19:1599–1605. doi:10.1007/s10570-012-9733-1

    CAS  Article  Google Scholar 

  22. Mu X, Gray DG (2015) Droplets of cellulose nanocrystal suspensions on drying give iridescent 3-D “coffee-stain” rings. Cellulose 22:1103–1107. doi:10.1007/s10570-015-0569-3

    CAS  Article  Google Scholar 

  23. Orts WJ, Godbout L, Marchessault RH, Revol JF (1998) Enhanced ordering of liquid crystalline suspensions of cellulose microfibrils: a small angle neutron scattering study. Macromolecules 31:5717–5725

    CAS  Article  Google Scholar 

  24. Pan J, Hamad W, Straus SK (2010) Parameters affecting the chiral nematic phase of nanocrystalline cellulose films. Macromolecules 43:3851–3858. doi:10.1021/ma902383k

    CAS  Article  Google Scholar 

  25. Park JH, Noh JH, Schütz C, Salazar-Alvarez G, Scalia G, Bergström L, Lagerwall JFP (2014) Macroscopic control of helix orientation in films dried from cholesteric liquid-crystalline cellulose nanocrystal suspensions. ChemPhysChem 15:1477–1484. doi:10.1002/cphc.201400062

    CAS  Article  Google Scholar 

  26. Revol JF, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14:170–172

    CAS  Article  Google Scholar 

  27. Revol JF, Godbout L, Gray DG (1998) Solid self-assembled films of cellulose with chiral nematic order and optically variable properties. J Pulp Pap Sci 24:146–149

    CAS  Google Scholar 

  28. Salas C, Nypelö T, Rodriguez-Abreu C, Carrillo C, Rojas OJ (2013) Nanocellulose properties and applications in colloids and interfaces. Curr Opin Coll Interface Sci 19:383–396. doi:10.1016/j.cocis.2014.10.003

    Article  Google Scholar 

  29. Tatsumi M, Teramoto Y, Nishio Y (2015) Different orientation patterns of cellulose nanocrystal films prepared from aqueous suspensions by shearing under evaporation. Cellulose 22:2983–2992. doi:10.1007/s10570-015-0722-z

    CAS  Article  Google Scholar 

  30. Vidovič L, Majaron B (2014) Elimination of single-beam substitution error in diffuse reflectance measurements using an integrating sphere. J Biomed Opt 19:027006. doi:10.1117/1.JBO.19.2.027006

    Article  Google Scholar 

  31. Wang B, Walther A (2015) Self-assembled, iridescent, crustacean-mimetic nanocomposites with tailored periodicity and layered cuticular structure. ACS Nano 9:10637–10646. doi:10.1021/acsnano.5b05074

    CAS  Article  Google Scholar 

  32. Wang PX, Hamad WY, MacLachlan MJ (2016) Structure and transformation of tactoids in cellulose nanocrystal suspensions. Nat Commun 7:11515. doi:10.1038/ncomms11515

    Article  Google Scholar 

Download references

Acknowledgments

ML, BM and IDO acknowledge financial support in the frame of the National Research Program of Slovenia P1-0192. LB and CS acknowledge the Wallenberg Wood Science Center (WWSC) for financial support. CS thanks the Research Foundation – Flanders (FWO) for funding under the Odysseus Grant (G.0C60.13N).

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. Drevenšek-Olenik.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ličen, M., Majaron, B., Noh, J. et al. Correlation between structural properties and iridescent colors of cellulose nanocrystalline films. Cellulose 23, 3601–3609 (2016). https://doi.org/10.1007/s10570-016-1066-z

Download citation

Keywords

  • Cellulose nanocrystals
  • Chiral nematic liquid crystal
  • Iridescent films
  • Shear stress
  • Optical reflectance spectroscopy
  • Scanning electron microscopy