, Volume 23, Issue 6, pp 3601–3609 | Cite as

Correlation between structural properties and iridescent colors of cellulose nanocrystalline films

  • M. Ličen
  • B. Majaron
  • J. Noh
  • C. Schütz
  • L. Bergström
  • J. Lagerwall
  • I. Drevenšek-Olenik
Original Paper


We investigate the effect of shear flow applied during the drying of aqueous suspension of cellulose nanocrystals on optical reflective properties and structural characteristics of the resulting solidified films. Shear flow can significantly improve internal structural homogeneity of the films, while its effect on optical reflective properties is relatively minor. The measured width of the selective reflection peak is an order of magnitude larger than expected for an ideal helically modulated structure, which reflects a distribution of pitch values and possibly also of regimes of distorted helical modulation. We attribute these imperfections to the broad size distribution of the cellulose nanocrystals.


Cellulose nanocrystals Chiral nematic liquid crystal Iridescent films Shear stress Optical reflectance spectroscopy Scanning electron microscopy 



ML, BM and IDO acknowledge financial support in the frame of the National Research Program of Slovenia P1-0192. LB and CS acknowledge the Wallenberg Wood Science Center (WWSC) for financial support. CS thanks the Research Foundation – Flanders (FWO) for funding under the Odysseus Grant (G.0C60.13N).


  1. Beck S, Bouchard J, Berry R (2011) Controlling the reflection wavelength of iridescent solid films of nanocrystalline cellulose. Biomacromolecules 12:167–172. doi: 10.1021/bm1010905 CrossRefGoogle Scholar
  2. Beck S, Bouchard J, Chauve G, Berry R (2013) Controlled production of patterns in iridescent solid films of cellulose nanocrystals. Cellulose 20:1401–1411. doi: 10.1007/s10570-013-9888-4 CrossRefGoogle Scholar
  3. Belyakov VA (1992) Diffraction optics of complex-structured periodic media. Springer, New YorkCrossRefGoogle Scholar
  4. Bodiguel H, Leng J (2010) Imaging the drying of colloidal suspension. Soft Matter 6:5451–5460. doi: 10.1039/C0SM00323A CrossRefGoogle Scholar
  5. Chandrasekhar S (1992) Liquid crystals, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  6. Conley K, Godbout L, Whitehead MA, van de Ven TGM (2016) Origin of the twist of cellulosic materials. Carbohydr Polym 135:285–299. doi: 10.1016/j.carbpol.2015.08.029 CrossRefGoogle Scholar
  7. Cranston ED, Gray DG (2008) Birefringence in spin-coated films containing cellulose nanocrystals. Colloids Surf A 325:44–51. doi: 10.1016/colsurfa.2008.04.042 CrossRefGoogle Scholar
  8. Diaz JA, Wu X, Martini A, Youngblood JP, Moon RJ (2013) Thermal expansion of self-organized and shear-oriented cellulose nanocrystal films. Biomacromolecules 14:2900–2908. doi: 10.1021/bm400794e CrossRefGoogle Scholar
  9. Dumanli AG, van der Kooij HM, Kamita G, Reisner E, Baumberg JJ, Steiner U, Vignolini S (2014a) Digital color in cellulose nanocrystal films. ACS Appl Mater Interfaces 6:12302–12306. doi: 10.1021/am501995e CrossRefGoogle Scholar
  10. Dumanli AG, Kamita G, Landman J, van der Kooij H, Glover BJ, Baumberg JJ, Steiner U, Vignolini S (2014b) Controlled, bio-inspired self-assembly of cellulose-based chiral reflectors. Adv Opt Mater 2:646–650. doi: 10.1002/adom.201400112 CrossRefGoogle Scholar
  11. Ebeling T, Paillet M, Borsali R, Diat O, Dufresne A, Cavaillé JY, Chanzy H (1999) Shear-induced orientational phenomena in suspensions of cellulose microcrystals, revealed by small angle X-ray scattering. Langmuir 15:6123–6126. doi: 10.1021/la990046+ CrossRefGoogle Scholar
  12. Frka-Petesic B, Sugiyama J, Kimura S, Chanzy H, Maret G (2015) Negative diamagnetic anisotropy and birefringence of cellulose nanocrystals. Macromolecules 48:8844–8857. doi: 10.1021/acs.macromol.5b02201 CrossRefGoogle Scholar
  13. Gebauer D, Oliynyk V, Salajkova M, Sort J, Zhou Q, Bergström L, Salazar-Alvarez G (2011) A transparent hybrid of nanocrystalline cellulose and amorphous calcium carbonate nanoparticles. Nanoscale 3:3563–3566. doi: 10.1039/c1nr10681c CrossRefGoogle Scholar
  14. Gray DG, Mu X (2015) Chiral nematic structure of cellulose nanocrystal suspensions and films; polarized light and atomic force microscopy. Materials 8:7873–7888. doi: 10.3390/ma8115427 CrossRefGoogle Scholar
  15. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500. doi: 10.1021/cr900339w CrossRefGoogle Scholar
  16. Hoeger I, Rojas OJ, Efimenko K, Velev OD, Kelley SS (2011) Ultrathin film coatings of aligned cellulose nanocrystals from a convective-shear assembly system and their surface mechanical properties. Soft Matter 7:1957–1967. doi: 10.1039/c0sm01113d CrossRefGoogle Scholar
  17. Holt BL, Stoyanov SD, Pelan E, Paunov VN (2010) Novel anisotropic materials from functionalised colloidal cellulose and cellulose derivatives. J Mater Chem 20:10058–10070. doi: 10.1039/c0jm0122g CrossRefGoogle Scholar
  18. John WDS, Fritz WJ, Lu ZJ, Yang DK (1995) Bragg reflection from cholesteric liquid crystals. Phy Rev E 51:1191–1198CrossRefGoogle Scholar
  19. Lagerwall JPF, Schütz C, Salajkova M, Noh JH, Park JH, Scalia G, Bergström L (2014) Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional films. NPG Asia Mater 6:e80. doi: 10.1038/am.2013.69 CrossRefGoogle Scholar
  20. Liu D, Wang S, Ma Z, Tian D, Gu M, Lin F (2014) Structure-color mechanism of iridescent cellulose nanocrystal films. RCS Adv 4:39322–39331. doi: 10.1039/c4ra06268j Google Scholar
  21. Majoinen J, Kontturi E, Ikkala O, Gray DG (2012) SEM imaging of chiral nematic films cast from cellulose nanocrystal suspensions. Cellulose 19:1599–1605. doi: 10.1007/s10570-012-9733-1 CrossRefGoogle Scholar
  22. Mu X, Gray DG (2015) Droplets of cellulose nanocrystal suspensions on drying give iridescent 3-D “coffee-stain” rings. Cellulose 22:1103–1107. doi: 10.1007/s10570-015-0569-3 CrossRefGoogle Scholar
  23. Orts WJ, Godbout L, Marchessault RH, Revol JF (1998) Enhanced ordering of liquid crystalline suspensions of cellulose microfibrils: a small angle neutron scattering study. Macromolecules 31:5717–5725CrossRefGoogle Scholar
  24. Pan J, Hamad W, Straus SK (2010) Parameters affecting the chiral nematic phase of nanocrystalline cellulose films. Macromolecules 43:3851–3858. doi: 10.1021/ma902383k CrossRefGoogle Scholar
  25. Park JH, Noh JH, Schütz C, Salazar-Alvarez G, Scalia G, Bergström L, Lagerwall JFP (2014) Macroscopic control of helix orientation in films dried from cholesteric liquid-crystalline cellulose nanocrystal suspensions. ChemPhysChem 15:1477–1484. doi: 10.1002/cphc.201400062 CrossRefGoogle Scholar
  26. Revol JF, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14:170–172CrossRefGoogle Scholar
  27. Revol JF, Godbout L, Gray DG (1998) Solid self-assembled films of cellulose with chiral nematic order and optically variable properties. J Pulp Pap Sci 24:146–149Google Scholar
  28. Salas C, Nypelö T, Rodriguez-Abreu C, Carrillo C, Rojas OJ (2013) Nanocellulose properties and applications in colloids and interfaces. Curr Opin Coll Interface Sci 19:383–396. doi: 10.1016/j.cocis.2014.10.003 CrossRefGoogle Scholar
  29. Tatsumi M, Teramoto Y, Nishio Y (2015) Different orientation patterns of cellulose nanocrystal films prepared from aqueous suspensions by shearing under evaporation. Cellulose 22:2983–2992. doi: 10.1007/s10570-015-0722-z CrossRefGoogle Scholar
  30. Vidovič L, Majaron B (2014) Elimination of single-beam substitution error in diffuse reflectance measurements using an integrating sphere. J Biomed Opt 19:027006. doi: 10.1117/1.JBO.19.2.027006 CrossRefGoogle Scholar
  31. Wang B, Walther A (2015) Self-assembled, iridescent, crustacean-mimetic nanocomposites with tailored periodicity and layered cuticular structure. ACS Nano 9:10637–10646. doi: 10.1021/acsnano.5b05074 CrossRefGoogle Scholar
  32. Wang PX, Hamad WY, MacLachlan MJ (2016) Structure and transformation of tactoids in cellulose nanocrystal suspensions. Nat Commun 7:11515. doi: 10.1038/ncomms11515 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Complex MatterJ. Stefan InstituteLjubljanaSlovenia
  2. 2.Physics and Materials Science Research UnitUniversity of LuxembourgLuxembourgLuxembourg
  3. 3.Department of Materials and Environmental ChemistryStockholm UniversityStockholmSweden
  4. 4.Faculty of Mathematics and PhysicsUniversity of LjubljanaLjubljanaSlovenia
  5. 5.Department of Chemical EngineeringKU Leuven, Campus Kulak KortrijkKortrijkBelgium

Personalised recommendations