Skip to main content
Log in

Enhanced radical scavenging activity of polyhydroxylated C60 functionalized cellulose nanocrystals

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A first demonstration of conjugated polyhydroxylated fullerene (C60(OH)30) on the surface of cellulose nanocrystals (CNC)s is reported. These nanohybrids display favourable antioxidant performance and are an attractive alternative to derivatized fullerene nanocages reported previously. UV–Vis measurements indicated that the C60(OH)30-CNC system scavenged 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals to a greater degree than C60(OH)30 alone, due to the nucleation of C60(OH)30 on the surface of CNC and high colloidal stability of the engineered nanohybrid. A mechanism for the 2-stage process of the radical reaction with C60(OH)30-CNC is proposed, and modelled by pseudo-first order kinetics. Successful grafting of C60(OH)30 on CNC was confirmed by FTIR, while TEM revealed the morphology of the system with a grafting degree of 20.8 % C60(OH)30. Zeta potential measurements of C60(OH)30-CNC in aqueous solution showed a high stability in the pH range 4.0-8.0, indicating functionality of the CNC based antioxidant system as a biocompatible and sustainable protocol with potential for use in personal care applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akhlaghi SP, Berry RC, Tam KC (2013) Surface modification of cellulose nanocrystal with chitosan oligosaccharide for drug delivery applications. Cellulose 20(4):1747–1764

    Article  CAS  Google Scholar 

  • Andersson T, Nilsson K, Sundahl M, Westman G, Wennerström O (1992) C60 embedded in γ-cyclodextrin: a water-soluble fullerene. J Chem Soc Chem Commun 1992:604–606

    Article  Google Scholar 

  • Assemi S, Tadjiki S, Donose BC, Nguyen AV, Miller JD (2010) Aggregation of fullerol C60(OH)24 nanoparticles as revealed using flow field-flow fractionation and atomic force microscopy. Langmuir 26(20):16063–16070

    Article  CAS  Google Scholar 

  • Atwood J, Koutsantonis G, Raston C (1994) Purification of C60 and C70 by selective complexation with calixarenes. Nature 368:229–231

    Article  CAS  Google Scholar 

  • Bhoi V, Kumar S, Murthy CN (2012) The self-assembly and aqueous solubilization of [60]fullerene with disaccharides. Carbohydr Res 359:120–127

    Article  CAS  Google Scholar 

  • Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT - Food Sci Tech 28:25–30

    Article  CAS  Google Scholar 

  • Brant JA, Labille J, Robichaud CO, Wiesner M (2007) Fullerol cluster formation in aqueous solutions: implications for environmental release. J Colloid Interface Sci 314(1):281–288

    Article  CAS  Google Scholar 

  • Chiang LY, Upasani RB, Swirczewski JW, Soled S (1993) Evidence of hemiketals incorporated in the structure of fullerols derived from aqueous acid chemistry. J Am Chem Soc 115(13):5453–5457

    Article  CAS  Google Scholar 

  • Chiang LY, Lu F-J, Lin J-T (1995) Free radical scavenging activity of water-soluble fullerenols. J Chem Soc, Chem Commun 12:1283

    Article  Google Scholar 

  • Geckeler KE, Samal S (2001) Rapid assessment of the free radical scavenging property of fullerenes. Fuller Sci Technol 9(1):17–23

    Article  CAS  Google Scholar 

  • Goswami TH, Singh R, Alam S, Mathur GN (2004) Thermal analysis: a unique method to estimate the number of substituents in fullerene derivatives. Thermochim Acta 419(1–2):97–104

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  CAS  Google Scholar 

  • Kato S, Aoshima H, Saitoh Y, Miwa N (2009) Highly hydroxylated or γ-cyclodextrin-bicapped water-soluble derivative of fullerene: the antioxidant ability assessed by electron spin resonance method and β-carotene bleaching assay. Bioorganic Med Chem Lett 19(18):5293–5296

    Article  CAS  Google Scholar 

  • Khan A, Khan RA, Salmieri S, Le Tien C, Riedl B, Bouchard J, Chauve G, Tan V, Kamal MR, Lacroix M (2012) Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydr Polym 90(4):1601–1608

    Article  CAS  Google Scholar 

  • Kokubo K, Shirakawa S, Kobayashi N, Aoshima H, Oshima T (2011) Facile and scalable synthesis of a highly hydroxylated water-soluble fullerenol as a single nanoparticle. Nano Res 4(2):204–215

    Article  CAS  Google Scholar 

  • Kumar A, Negi YS, Choudhary V, Bhardwaj NK (2014) Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. J Mater Phys Chem 2(1):1–8

    Google Scholar 

  • Li J, Takeuchi A, Ozawa M, Li X, Saigo K, Kitazawa K (1993) C60 fullerol formation catalysed by quaternary ammonium hydroxides. J Chem Soc, Chem Commun 23:1784

    Article  Google Scholar 

  • Matsubayashi K, Goto T, Togaya K, Kokubo K, Oshima T (2008) Effects of pin-up oxygen on [60]fullerene for enhanced antioxidant activity. Nanoscale Res Lett 3(7):237–241

    Article  CAS  Google Scholar 

  • Peng BL, Dhar N, Liu HL, Tam KC (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 89(5):1191–1206

    Article  CAS  Google Scholar 

  • Sin SL, Gan LH, Hu X, Tam KC, Gan YY (2005) Photochemical and thermal isomerizations of azobenzene-containing amphiphilic diblock copolymers in aqueous micellar aggregates and in film. Macromolecules 38(9):3943–3948

    Article  CAS  Google Scholar 

  • Tam J, Liu J, Yao Z (2013) Effect of microstructure on the antioxidant properties of fullerene polymer solutions. RSC Adv 3:4622–4627

    Article  CAS  Google Scholar 

  • Ueno H, Yamakura S, Arastoo RS, Oshima T, Kokubo K (2014) Systematic evaluation and mechanistic investigation of antioxidant activity of fullerenols using B-carotene bleaching assay. J Nanomater 2014:1–7

    Article  Google Scholar 

  • Williams M, Zwier J, Verhoeven J, Nachtegaal G, Kentgens A (1994) Interactions of fullerenes and calixarenes in the solid state studied with 13C CP-MAS NMR. J Am Chem Soc 116(15):6965–6966

    Article  CAS  Google Scholar 

  • Yao Z, Tam J H. (2014). Fullerene-derived cellulose nanocrystal, their preparation and uses thereof. US Patent 20140256832 A1

Download references

Acknowledgments

We wish to acknowledge Celluforce Inc. for providing the cellulose nanocrystals. The research funding from CelluForce and AboraNano facilitated the research on CNCs. K. C. Tam wishes to acknowledge funding from CFI and NSERC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kam C. Tam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awan, F., Bulger, E., Berry, R.M. et al. Enhanced radical scavenging activity of polyhydroxylated C60 functionalized cellulose nanocrystals. Cellulose 23, 3589–3599 (2016). https://doi.org/10.1007/s10570-016-1057-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-1057-0

Keywords

Navigation