, Volume 23, Issue 6, pp 3809–3817 | Cite as

Comparison of biodegradable substrates for printed organic electronic devices

  • A. J. Morfa
  • T. Rödlmeier
  • N. Jürgensen
  • S. Stolz
  • G. Hernandez-Sosa
Original Paper


Building on the results of the green chemistry movement, the development of biodegradable strain sensors and OLEDs, produced from sustainable materials and solvents, is presented. The choice of solvents and substrate is discussed in the context of terms relevant to printing, namely solvent solubility parameters, surface wetting envelopes and surface roughness. A new method for producing biodegradable and flat substrates from a common and commercially available cellulose diacetate foil is presented. Challenges associated with working with biodegradable foils are presented and different techniques are discussed to ultimately overcome these challenges and produce functional devices. Lastly, many green solvents and several commercially available biodegradable foils are compared for consideration in future work.


Biodegradable electronics Surface treatments Green materials OLEDs 



All authors acknowledge financial support from the German Ministry of Education and Research (BMBF) under grant 03X5526.

Supplementary material

10570_2016_1049_MOESM1_ESM.doc (1.2 mb)
Supplementary material 1 (DOC 1211 kb)


  1. Bianco A, Kostarelos K, Prato M (2011) Making carbon nanotubes biocompatible and biodegradable. Chem Commun (Camb) 47:10182–10188CrossRefGoogle Scholar
  2. De Volder MFL, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications—SI. Science (80-.) 339:535–539Google Scholar
  3. Facchetti A (2007) Semiconductors for organic transistors. Mater Today 10:28–37CrossRefGoogle Scholar
  4. Fukaya Y, Iizuka Y, Sekikawa K, Ohno H (2007) Bio ionic liquids: room temperature ionic liquids composed wholly of biomaterials. Green Chem 9:1155–1157CrossRefGoogle Scholar
  5. Garcia MT, Gathergood N, Scammells PJ (2005) Biodegradable ionic liquids—Part II. Effect of the anion and toxicology. Green Chem 7:9–14CrossRefGoogle Scholar
  6. Hansen LF, Jensen LK, Jacobsen JP (1996) Bis-intercalation of a homodimeric thiazole orange dye in DNA in symmetrical pyrimidine-pyrimidine-purine-purine oligonucleotides. Nucleic Acids Res 24:859–867CrossRefGoogle Scholar
  7. Henderson RK et al (2011) Expanding GSK’s solvent selection guide—embedding sustainability into solvent selection starting at medicinal chemistry. Green Chem 13:854CrossRefGoogle Scholar
  8. Hernández-López S, Vigueras-Santiago E, Mendoza Mora M, Farias Mancilla JR, Zaragoza Contreras EA (2013) Cellulose-based polymer composite with carbon black for tetrahydrofuran sensing. Int J Polym Sci 2013:381653. doi: 10.1155/2013/381653 CrossRefGoogle Scholar
  9. Ihalainen P et al (2012) Influence of surface properties of coated papers on printed electronics. Ind Eng Chem Res 51:6025–6036CrossRefGoogle Scholar
  10. Irimia-Vladu M et al (2010) Biocompatible and biodegradable materials for organic field-effect transistors. Adv Funct Mater 20:4069–4076CrossRefGoogle Scholar
  11. Irimia-Vladu M, Głowacki ED, Voss G, Bauer S, Sariciftci NS (2012a) Green and biodegradable electronics. Mater Today 15:340–346CrossRefGoogle Scholar
  12. Irimia-Vladu M et al (2012b) Indigo—a natural pigment for high performance ambipolar organic field effect transistors and circuits. Adv Mater 24:375–380CrossRefGoogle Scholar
  13. Irimia-Vladu M et al (2013) Natural resin shellac as a substrate and a dielectric layer for organic field-effect transistors. Green Chem 15:1473CrossRefGoogle Scholar
  14. Jessop PG (2011) Searching for green solvents. Green Chem 13:1391CrossRefGoogle Scholar
  15. Khan MA, Bhansali US, Alshareef HN (2012) High-performance non-volatile organic ferroelectric memory on banknotes. Adv Mater 24:2165–2170CrossRefGoogle Scholar
  16. Krebs FC, Tromholt T, Jørgensen M (2010) Upscaling of polymer solar cell fabrication using full roll-to-roll processing. Nanoscale 2:873–886CrossRefGoogle Scholar
  17. Legnani C et al (2008) Bacterial cellulose membrane as flexible substrate for organic light emitting devices. Thin Sol Films 517:1016–1020CrossRefGoogle Scholar
  18. Leigh SJ, Bradley RJ, Purssell CP, Billson DR, Hutchins DA (2012) A simple, low-cost conductive composite material for 3d printing of electronic sensors. PLoS ONE 7:e49365CrossRefGoogle Scholar
  19. Lu N, Lu C, Yang S, Rogers J (2012) Highly sensitive skin-mountable strain gauges based entirely on elastomers. Adv Funct Mater 22:4044–4050CrossRefGoogle Scholar
  20. Mitsubishi. Hostaphan ® GN Datasheet. (2014)Google Scholar
  21. Narayan MR (2012) Review: dye sensitized solar cells based on natural photosensitizers. Renew Sustain Energy Rev 16:208–215Google Scholar
  22. Peng B, Chan PKL (2014) Flexible organic transistors on standard printing paper and memory properties induced by floated gate electrode. Org Electron Phys Mater Appl 15:203–210Google Scholar
  23. Petkovic M et al (2010) Novel biocompatible cholinium-based ionic liquids—toxicity and biodegradability. Green Chem 12:643CrossRefGoogle Scholar
  24. Sekitani T, Zschieschang U, Klauk H, Someya T (2010) Flexible organic transistors and circuits with extreme bending stability. Nat Mater 9:1015–1022CrossRefGoogle Scholar
  25. Tao H et al (2010) Metamaterial silk composites at terahertz frequencies. Adv Mater 22:3527–3531CrossRefGoogle Scholar
  26. Yu L et al (2012) Green dielectric materials composed of natural graphite minerals and biodegradable polymer. RSC Adv 2:8793CrossRefGoogle Scholar
  27. Zhou H, Wu L, Gao Y, Ma T (2011) Dye-sensitized solar cells using 20 natural dyes as sensitizers. J Photochem Photobiol A Chem 219:188–194CrossRefGoogle Scholar
  28. Zhu H et al (2016) Extreme light management in mesoporous wood cellulose paper for optoelectronics. ACS Nano 10:1369–1377CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Light Technology InstituteKarlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.InnovationLabHeidelbergGermany

Personalised recommendations