Cellulose

, Volume 23, Issue 5, pp 3265–3279 | Cite as

Gellan gum hybrid hydrogels for the cleaning of paper artworks contaminated with Aspergillus versicolor

  • Giovanni De Filpo
  • Anna Maria Palermo
  • Riccardo Tolmino
  • Patrizia Formoso
  • Fiore Pasquale Nicoletta
Original Paper

Abstract

The degradation of archive materials is related to irreversible phenomena induced by light, temperature, humidity, air pollution, micro-organisms, and use. Among biological factors, fungi can induce harmful effects in paper artworks. Further forms of damage (e.g. artwork swelling, fibre lifting and sheet delamination) can be caused by water immersion, which is one of the most commonly used methods for cleaning paper. To avoid damage it is necessary to control the amount and absorption rate of water by paper. Recently, gellan gum hydrogels have been proposed as effective tools to allow contaminant removal from paper supports, owing to the controlled water release and adhesive properties of gellan gum. In this study hybrid hydrogels were fabricated by doping gellan gum either with calcium compounds (calcium sulphate, hydroxide, chloride, and acetate) or titanium dioxide nanoparticles in order to evaluate their ability in cleaning different types of paper samples affected by spots originating from Aspergillus versicolor. The best decolourization results were obtained by calcium acetate/gellan gum hydrogels and titanium dioxide nanoparticle/gellan gum hydrogels, while no synergistic effect was found in paper samples treated with calcium acetate/titanium dioxide/gellan gum hydrogels. Hybrid hydrogels were tested on a case-study book.

Keywords

Hydrogels Gellan gum Aspergillus versicolor Fungi Photo-catalysis Titanium dioxide 

References

  1. Adamo M, Magaudda G (2003) Susceptibility of printed paper attack of chewing insects after gamma irradiation and ageing. Restaurator 24:95–105. doi:10.1515/REST.2003.95 Google Scholar
  2. Afsharpour M, Rad FT, Malekian H (2011) New cellulosic titanium dioxide nanocomposite as a protective coating for preserving paper-art-works. J Cult Herit 12:380–383. doi:10.1016/j.culher.2011.03.001 CrossRefGoogle Scholar
  3. Arai H (2000) Foxing caused by fungi: twenty-five years of study. Int Biodeterior Biodegrad 46:181–188. doi:10.1016/S0964-8305(00)00063-9 CrossRefGoogle Scholar
  4. Chen F, Yang X, Wu Q (2009) Antifungal capability of TiO2 coated film on moist wood. Build Environ 44:1088–1093. doi:10.1016/j.buildenv.2008.07.018 CrossRefGoogle Scholar
  5. De Filpo G, Mormile S, Nicoletta FP, Chidichimo G (2010) Fast, self-supplied, all-solid photoelectrochromic film. J Power Sources 195:4365–4369. doi:10.1016/j.jpowsour.2010.01.037 CrossRefGoogle Scholar
  6. De Filpo G, Palermo AM, Rachiele F, Nicoletta FP (2013) Preventing fungal growth in wood by titanium dioxide nanoparticles. Int Biodeterior Biodegrad 85:217–222. doi:10.1016/j.ibiod.2013.07.007 CrossRefGoogle Scholar
  7. De Filpo G, Palermo AM, Munno R, Molinaro L, Formoso P, Nicoletta FP (2015) Gellan gum/titanium dioxide nanoparticle hybrid hydrogels for the cleaning and disinfection of parchment. Int Biodeterior Biodegrad 103:51–58. doi:10.1016/j.ibiod.2015.04.012 CrossRefGoogle Scholar
  8. Fedrigoni SpA (2012) Free life Cento data sheet. http://www.fedrigoni.co.uk/sites/fedrigonicartiere.com/files/Freelife%20Cento_0.pdf. Accessed 24 June 2016
  9. Florian ML (2002) Fungal facts: solving fungal problems in heritage collection. Archetype Publications, London, UK, p 146Google Scholar
  10. Fonseca AJ, Pina F, Macedo MF, Leal N, Romanowska-Deskins A, Laiz L, Gomez-Bolea A, Saiz-Jimenez C (2010) Anatase as an alternative application for preventing biodeterioration of mortars: evaluation and comparison with other biocides. Int Biodeterior Biodegrad 64:388–396. doi:10.1016/j.ibiod.2010.04.006 CrossRefGoogle Scholar
  11. Friberg TR, Zafiropulos V, Kalaitzaki M, Kowalski R, Petrakis J, Fotakis C (1997) Excimer laser cleaning of mold-contaminated paper: sterilization and air quality considerations. Lasers Med Sci 12:55–59. doi:10.1007/BF02763922 CrossRefGoogle Scholar
  12. Gutarowska B, Skora J, Zduniak K, Rembisz D (2012) Analysis of the sensitivity of microorganisms contaminating museums and archives to silver nanoparticles. Int Biodeterior Biodegrad 68:7–17. doi:10.1016/j.ibiod.2011.12.002 CrossRefGoogle Scholar
  13. Gutteridge JMC (1987) Lipid peroxidation: some problems and concepts. In: Halliwell B (ed) Oxygen radicals and tissue injury. Proceedings of brook lodge symposium. Upjohn Co., Bethesda, MD, pp 9–19Google Scholar
  14. Hoffmann MR, Martin ST, Choi WY, Bahnemann DW (1995) Environmental applications of semiconductor photo-catalysis. Chem Rev 95:69–96. doi:10.1021/cr00033a004 CrossRefGoogle Scholar
  15. Houck MM (2009) Identification of textile fibers. Elsevier, Amsterdam, p 343CrossRefGoogle Scholar
  16. Hueck HJ (1968) The biodeterioration of materials—an appraisal. In: Walters AH, Elphick JS (eds) biodeterioration of materials. Elsevier, London, pp 6–12Google Scholar
  17. Iannuccelli S, Sotgiu S (2010) Wet treatments of works of art on paper with rigid gellan gels. In: The book and paper group annual, AIC’s 38th annual meeting, May 11–14, 2010, Milwaukee, Wisconsin. http://cool.conservation-us.org/coolaic/sg/bpg/annual/v29/bp29-04.pdf
  18. Jurjevic Z, Peterson SW, Horn BW (2012) Aspergillus section Versicolores: nine new species and multilocus DNA sequence based phylogeny. IMA Fungus 3:59–79. doi:10.5598/imafungus.2012.03.01.07 CrossRefGoogle Scholar
  19. La Russa MF, Ruffolo SA, Rovella N, Belfiore CM, Palermo AM, Guzzi MT, Crisci GM (2012) Multifunctional TiO2 coatings for cultural heritage. Prog Org Coat 74:186–191. doi:10.1016/j.porgcoat.2011.12.008 CrossRefGoogle Scholar
  20. Maness P-C, Smolinski S, Blake DM, Huang Z, Wolfrum EJ, Jacoby WA (1999) Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol 65:4094–4098Google Scholar
  21. Matsunaga T, Tomoda R, Nakajima T, Nakamura N, Komine T, Wake H (1985) Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol Lett 29:211–214CrossRefGoogle Scholar
  22. Matsunaga T, Tomoda R, Nakajima T, Nakamura N, Komine T (1988) Continuous-sterilization system that uses photosemiconductor powders. Appl Environ Microbiol 54:1330–1333Google Scholar
  23. Mendes G, Brandao TRS, Silva CLM (2007) Ethylene oxide sterilization of medical devices: a review. Am J Infect Control 35:574–581. doi:10.1016/j.ajic.2006.10.014 CrossRefGoogle Scholar
  24. Michaelsen A, Pinzari F, Ripka K, Lubitz W, Pinar G (2006) Application of molecular techniques for identification of fungal communities colonizing paper material. Int Biodeterior Biodegrad 58:133–141. doi:10.1016/j.ibiod.2006.06.019 CrossRefGoogle Scholar
  25. Nicoletta FP, Cupelli D, Formoso P, De Filpo G, Colella V, Gugliuzza A (2012) Light responsive polymer membranes: a review. Membranes 2:134–197. doi:10.3390/membranes2010134 CrossRefGoogle Scholar
  26. NTP (National Toxicology Program) (2014) Report on carcinogens, 13th edn. US Department of Health and Human Services, Public Health Service, Research Triangle Park, NC. http://ntp.niehs.nih.gov/pubhealth/roc/roc13/. Accessed 06 June 2016
  27. Placido M (2012) Il restauro e la protezione della carta mediante trattamento con gel di Gellano. Tesi di Dottorato di Ricerca/Paper restoration and protection by using Gellan-gum gel. Ph.D. thesis online at http://padis.uniroma1.it/bitstream/10805/1447/1/Tesi%20dottorato%20-%20Matteo%20PLACIDO%20rid.pdf
  28. Rakotonirainy MS, Lavédrine B (2005) Screening for antifungal activity of essential oils and related compounds to control the biocontamination in libraries and archives storage areas. Int Biodeterior Biodegrad 55:141–147. doi:10.1016/j.ibiod.2004.10.002 CrossRefGoogle Scholar
  29. Sequeira S, Cabrita EJ, Macedo MF (2012) Antifungals on paper conservation: an overview. Int Biodeterior Biodegrad 74:67–86. doi:10.1016/j.ibiod.2012.07.011 CrossRefGoogle Scholar
  30. Shirakawa MA, Gaylarde CC, Sahão HD, Lima JRB (2013) Inhibition of Cladosporium growth on gypsum panels treated with nanosilver particles. Int Biodeterior Biodegrad 85:57–61. doi:10.1016/j.ibiod.2013.04.018 CrossRefGoogle Scholar
  31. Sichel C, de Cara M, Tello J, Blanco J, Fernandez-Ibanez P (2007) Solar photocatalytic disinfection of agricultural pathogenic fungi: Fusarium species. Appl Catal B 74:152–160. doi:10.1016/j.apcatb.2007.02.005 CrossRefGoogle Scholar
  32. Silva M, Moraes AML, Nishikawa MM, Gatti MJA, Alencar MAV, Brandão LE, Nóbrega A (2006) Inactivation of fungi from deteriorated paper materials by radiation. Int Biodeterior Biodegrad 57:163–167. doi:10.1016/j.ibiod.2006.02.003 CrossRefGoogle Scholar
  33. Sterflinger K (2010) Fungi: their role in deterioration of cultural heritage. Fungal Biol Rev 24:47–55. doi:10.1016/j.fbr.2010.03.003 CrossRefGoogle Scholar
  34. Sunada K, Kikuchi Y, Hashimoto K, Fujishima A (1998) Bactericidal and detoxification effects of TiO2 thin film photocatalysts. Environ Sci Technol 32:726–728. doi:10.1021/es970860o CrossRefGoogle Scholar
  35. Tang LC (1981) Washing and deacidifying paper in the same operation. In: Williams JC (ed) Preservation of paper and textiles of historic and artistic value II, Advances in chemistry series, vol 193. American Chemical Society, Washington, pp 63–86. ISBN 0-8412-0553-1Google Scholar
  36. Valentin N (2007) Microbial contamination in archives and museums: health hazards and preventive strategies using air ventilation systems contribution to the experts’ roundtable on sustainable climate management strategies, Tenerife, Spain. http://www.getty.edu/conservation/our_projects/science/climate/paper_valentin.pdf
  37. Zervos S (2007) Characterization of changes induced by ageing to the microstructure of pure cellulose paper by use of a gravimetric water vapour adsorption technique. Cellulose 14:375–384. doi:10.1007/s10570-007-9125-0 CrossRefGoogle Scholar
  38. Zervos S, Alexopoulou I (2015) Paper conservation methods: a literature review. Cellulose 22:2859–2897. doi:10.1007/s10570-015-0699-7 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Giovanni De Filpo
    • 1
  • Anna Maria Palermo
    • 2
  • Riccardo Tolmino
    • 2
  • Patrizia Formoso
    • 3
  • Fiore Pasquale Nicoletta
    • 3
  1. 1.Dipartimento di Chimica e Tecnologie ChimicheUniversità della CalabriaRendeItaly
  2. 2.Dipartimento di Biologia, Ecologia, e Scienze della TerraUniversità della CalabriaRendeItaly
  3. 3.Dipartimento di Farmacia e Scienze della Salute e della NutrizioneUniversità della CalabriaRendeItaly

Personalised recommendations