Skip to main content

Carboxymethyl cellulose/oxidized regenerated cellulose hydrogels as adhesion barriers: comparative study with different molecular weights and substitution degrees

Abstract

For hydrogel materials used in surgery to prevent post-operative adhesion formation, the ability to reduce adhesion formation effectively through ease of application is the most outstanding attribute for improving their clinical utility. In this study, hydrogel formulation with carboxymethyl cellulose (CMC) and water soluble sodium oxidized regenerated cellulose (ORC) powder was developed. The formulation was achieved with different molecular weights and degrees of substitution of the CMC to investigate the effects of these two variables on adhesion prevention. In vivo studies showed that hydrogel formulations with medium molecular weight and a higher degree of substitution gave the best anti-adhesion performance. Histological analyses indicated the materials did not damage the tissue at the surgery area. Promising results were obtained for the development of ORC containing hydrogel formulations for post-operative adhesion prevention applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Bae SH, Son SR, Kumar SS, Nguyen TH, Kim SW, Min YK, Lee BT (2014) Evaluation of the potential anti-adhesion effect of the PVA/Gelatin membrane. J Biomed Mater Res, Part B 102(4):840–849. doi:10.1002/jbm.b.33066

    Article  Google Scholar 

  2. Barbucci R, Magnani A, Consumi M (2000) Swelling behavior of carboxymethylcellulose hydrogels in relation to cross-linking, pH, and charge density. Macromolecules 33(20):7475–7480. doi:10.1021/ma0007029

    CAS  Article  Google Scholar 

  3. Basagaoglu Demirekin Z, Aydemir Sezer U, Ulusoy Karatopuk D, Sezer S (2015) Development of metal ion binded oxidized regenerated cellulose powder as hemostatic agent: a comparative study with in vivo performance. Ind Eng Chem Res 54(18):4906–4914. doi:10.1021/ie504985b

    CAS  Article  Google Scholar 

  4. Bolgen N, Vargel I, Korkusuz P, Menceloglu YZ, Piskin E (2007) In vivo performance of antibiotic embedded electrospun PCL membranes for prevention of abdominal adhesions. J Biomed Mater Res, Part B 81(2):530–543. doi:10.1002/jbm.b.30694

    CAS  Article  Google Scholar 

  5. Brochhausen C, Schmitt VH, Planck CNE, Rajab TK, Hollemann D, Tapprich C, Krämer B, Wallwiener C, Hierlemann H, Zehbe R, Planck H, Kirkpatrick CJ (2012) Current strategies and future perspectives for intraperitoneal adhesion prevention. J Gastrointest Surg 16(6):1256–1274. doi:10.1007/s11605-011-1819-9

    Article  Google Scholar 

  6. Dimitrijevich SD, Tatarko M, Gracy RW, Linsky CB, Olsen C (1990) Biodegradation of oxidized regenerated cellulose. Carbohydr Res 195:247–256. doi:10.1016/0008-6215(90)84303-C

    CAS  Article  Google Scholar 

  7. diZerega GS (2000) Peritoneal surgery. In: DeCherney AH, Diamond MP, Ellis H, Gomel V, Haney AF, Holmdahl L, Rock JA, Rodgersr KE, Thompson JN (eds) 1st edn. Springer, New York, p 469

  8. Ewoldt JM, Anderson DE, Hardy J, Weisbrode SE (2004) Evaluation of a sheep laparoscopic uterine trauma model and repeat laparoscopy for evaluation of adhesion formation and prevention with sodium carboxymethylcellulose. Vet Surg 33(6):668–672. doi:10.1111/j.1532-950x.2004.04090.x

    Article  Google Scholar 

  9. Falabella CA, Melendez MM, Weng L, Chen W (2010) Novel macromolecular crosslinking hydrogel to reduce intra-abdominal adhesions. J Surg Res 159(2):772–778. doi:10.1016/j.jss.2008.09.035

    CAS  Article  Google Scholar 

  10. Fredericks CM, Kotry I, Holtz G, Askalani AH, Serour GI (1986) Adhesion prevention in the rabbit with sodium carboxymethylcellulose solutions. Am J Obstet Gynecol 155(3):667–670. doi:10.1016/0002-9378(86)90304-2

    CAS  Article  Google Scholar 

  11. Gago LA, Saed G, Elhammady E, Diamond MP (2006) Effect of oxidized regenerated cellulose (Interceed®) on the expression of tissue plasminogen activator and plasminogen activator inhibitor-1 in human peritoneal fibroblasts and mesothelial cells. Fertil Steril 86(4):1223–1227. doi:10.1016/j.fertnstert.2006.04.021

    CAS  Article  Google Scholar 

  12. Gao X, Deng X, Wei X, Shi H, Wang F, Ye T, Shao B, Nie W, Li Y, Luo M, Gong C, Huang N (2013) Novel thermosensitive hydrogel for preventing formation of abdominal adhesions. Int J Nanomed 8:2453–2463. doi:10.2147/IJN.S46357

    Article  Google Scholar 

  13. Guillaume O, Teuschl AH, Gruber-Blum S, Fortelny RH, Redl H, Petter-Puchner A (2015) Emerging trends in abdominal wall reinforcement: bringing bio-functionality to meshes. Adv Healthcare Mater 4(12):1763–1789. doi:10.1002/adhm.201500201

    CAS  Article  Google Scholar 

  14. Hoare T, Yeo Y, Bellas E, Bruggeman JP, Kohane DS (2014) Prevention of peritoneal adhesions using polymeric rheological blends. Acta Biomater 10(3):1187–1193. doi:10.1016/j.actbio.2013.12.029

    CAS  Article  Google Scholar 

  15. Ito T, Yeo Y, Highley CB, Bellas E, Kohane DS (2007) Dextran-based in situ cross-linked injectable hydrogels to prevent peritoneal adhesions. Biomaterials 28(23):3418–3426. doi:10.1016/j.biomaterials.2007.04.017

    CAS  Article  Google Scholar 

  16. Kamel RM (2010) Prevention of postoperative peritoneal adhesions. Eur J Obstet Gynecol Reprod Biol 150(2):111–118. doi:10.1016/j.amjsurg.2010.02.008

    Article  Google Scholar 

  17. Kling J (1996) Genzyme’s Seprafilm gets FDA marketing nod. Nat Biotechnol 14(5):572. doi:10.1038/nbt0596-572a

    Google Scholar 

  18. Li L, Wang N, Jin X, Deng R, Nie S, Sun L, Wu Q, Wei Y, Gong C (2014) Biodegradable and injectable in situ cross-linking chitosan-hyaluronic acid based hydrogels for postoperative adhesion prevention. Biomaterials 35(12):3903–3917. doi:10.1016/j.biomaterials.2014.01.050

    CAS  Article  Google Scholar 

  19. Nair SK, Bath IK, Aurora AL (1974) Role of proteolytic enzyme in the prevention of postoperative intraperitoneal adhesions. Arch Surg 108(6):849–853. doi:10.1001/archsurg.1974.01350300081019

    CAS  Article  Google Scholar 

  20. Phillips RKS, Dudley HAF (1984) The effect of tetracyline lavage and trauma on visceral and parietal peritoneal ultrastructure and adhesion formation. Br J Surg 71(7):537–539. doi:10.1002/bjs.1800710722

    CAS  Article  Google Scholar 

  21. Reeves R, Ribeiro A, Lombardo L, Boyer R, Leach JB (2010) Synthesis and characterization of carboxymethylcellulose-methacrylate hydrogel cell scaffolds. Polymers 2:252–264. doi:10.3390/polym2030252

    CAS  Article  Google Scholar 

  22. Rodgers KE, Robertson JT, Espinoza T, Oppeltc W, Cortesec S, diZerega GS, Berg RA (2003) Reduction of epidural fibrosis in lumbar surgery with Oxiplex adhesion barriers of carboxymethylcellulose and polyethylene oxide. Spine J 3(4):277–283. doi:10.1016/S1529-9430(03)00035-4

    Article  Google Scholar 

  23. Ryan CK, Sax HC (1995) Evaluation of a carboxymethylcellulose sponge for prevention of postoperative adhesions. Am J Surg 169(1):154–159. doi:10.1016/S0002-9610(99)80125-1

    CAS  Article  Google Scholar 

  24. Sakai S, Ueda K, Taya M (2015) Peritoneal adhesion prevention by a biodegradable hyaluronic acid-based hydrogel formed in situ through a cascade enzyme reaction initiated by contact with body fluid on tissue surfaces. Acta Biomater 24:152–158. doi:10.1016/j.actbio.2015.06.023

    CAS  Article  Google Scholar 

  25. Schnüriger B, Barmparas G, Branco BC, Lustenberger T, Inaba K, Demetriades D (2011) Prevention of postoperative peritoneal adhesions: a review of the literature. Am J Surg 201(1):111–121. doi:10.1016/j.amjsurg.2010.02.008

    Article  Google Scholar 

  26. Sheldon HK, Gainsbury ML, Cassidy MR, Chu DI, Stucchi AF, Becker JM (2012) A sprayable hyaluronate/carboxymethylcellulose adhesion barrier exhibits regional adhesion reduction efficacy and does not impair intestinal healing. J Gastrointest Surg 16(2):325–333. doi:10.1007/s11605-011-1709-1

    Article  Google Scholar 

  27. Wallwiener M, Brucker S, Hierlemann H, Brochhausen C, Solomayer E, Wallwiener C (2006) Innovative barriers for peritoneal adhesion prevention: Liquid or solid? A rat uterine horn model. Fertil Steril 86(4):1266–1276. doi:10.1016/j.fertnstert.2006.05.023

    Article  Google Scholar 

  28. Wei CZ, Hou CL, Gu QS, Jiang LX, Zhu B, Sheng AL (2009) A thermosensitive chitosan-based hydrogel barrier for post-operative adhesions’ prevention. Biomaterials 30(29):5534–5540. doi:10.1016/j.biomaterials.2009.05.084

    CAS  Article  Google Scholar 

  29. Yang B, Yang GC, Yong QZ, Zhao X, Yu LZ, Tao ZS, Rong QX, Zhong Q, Luo F, Quan WY (2011) Prevention of abdominal adhesion formation by thermosensitive PECE-hydrogel in a rat uterine horn model. J Biomed Mater Res, Part B 96(1):57–66. doi:10.1002/jbm.b.31739

    Article  Google Scholar 

  30. Yelimlies B, Alponat A, Cubukcu A, Kuru M, Oz S, Ercin C, Gonullu N (2003) Carboxymethylcellulose coated on visceral face of polypropylene mesh prevents adhesion without impairing wound healing in incisional hernia model in rats. Hernia 7(3):130–133. doi:10.1007/s10029-003-0125-1

    CAS  Article  Google Scholar 

  31. Yeo Y, Adil M, Bellas E, Astashkina A, Chaudhary N, Kohane DS (2007) Prevention of peritoneal adhesions with an in situ cross-linkable hyaluronan hydrogel delivering budesonide. J Control Release 120(3):178–185. doi:10.1016/j.jconrel.2007.04.016

    CAS  Article  Google Scholar 

  32. Yu L, Hu H, Chen L, Bao X, Li Y, Chen L, Xu G, Ye X, Ding J (2014) Comparative studies of thermogels in preventing post-operative adhesions and corresponding mechanisms. Biomater Sci 2:1100–1109. doi:10.1039/C4BM00029C

    CAS  Article  Google Scholar 

  33. Zhang Z, Ni J, Chen L, Yu L, Xu J, Ding J (2011) Biodegradable and thermoreversible PCLA-PEG-PCLA hydrogel as a barrier for prevention of post-operative adhesion. Biomaterials 32(21):4725–4736. doi:10.1016/j.biomaterials.2011.03.046

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support by The Scientific and Technological Research Council of Turkey (BIYOTEG-5130028 Project).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Serdar Sezer.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aktekin, A., Sahin, I., Aydemir Sezer, U. et al. Carboxymethyl cellulose/oxidized regenerated cellulose hydrogels as adhesion barriers: comparative study with different molecular weights and substitution degrees. Cellulose 23, 3145–3156 (2016). https://doi.org/10.1007/s10570-016-1014-y

Download citation

Keywords

  • Postoperative adhesion
  • Adhesion barrier
  • Hydrogel
  • Oxidized regenerated cellulose
  • Carboxymethyl cellulose