Skip to main content
Log in

Comparison of hydroxypropyl and carboxymethyl guar for the preparation of nanocellulose composite films

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The gas barrier and mechanical properties are crucial parameters for packaging materials, and they are highly correlated to the molecular interactions in the polymer matrix. To improve these properties of TEMPO-oxidized cellulose nanofibers (TOCNs) composite films, we studied the effect using hydroxypropyl guar (HPG) or carboxymethyl guar (CMG) in the preparation of TOCN composite films, which were made by following the solution-casting method. The subsequent film characterizations were carried out by UV–Vis spectra, scanning electron microscopy, oxygen and water vapor permeability measurements, tensile and thermogravimetric analyses. SEM results showed that CMG-based films had denser structures than their HPG counterparts. Moreover, the improved hydrogen bonding of the CMG-based films was partially responsible for the improved gas barrier performance, tensile strength and thermal stability. These results support the conclusion that CMG had advantages over HPG when used in the preparation of TOCNs packaging composite films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel-Halim ES, Al-Deyab SS (2014) Electrically conducting silver/guar gum/poly(acrylic acid) nanocomposite. Int J Biol Macromol 69:456–463

    Article  CAS  Google Scholar 

  • Benitez AJ, Torres-Rendon J, Poutanen M, Walther A (2013) Humidity and multiscale structure govern mechanical properties and deformation modes in films of native cellulose nanofibrils. Biomacromolecules 14(12):4497–4506

    Article  CAS  Google Scholar 

  • Cheng S, Zhang Y, Cha R, Yang J, Jiang X (2015) Water-soluble nanocrystalline cellulose films with highly transparent and oxygen barrier properties. Nanoscale 8(2):973–978

    Article  Google Scholar 

  • Dai L, Long Z, Lv Y, Peng Q-C (2014) The role of formic acid pretreatment in improving the carboxyl content of TEMPO-oxidized cellulose. Cell Chem Technol 48(5–6):469–475

    CAS  Google Scholar 

  • Dai L, Wang B, Long Z, Chen L, Zhang D, Guo S (2015) Properties of hydroxypropyl guar/TEMPO-oxidized cellulose nanofibrils composite films. Cellulose 22(5):3117–3126

    Article  CAS  Google Scholar 

  • Das D, Ara T, Dutta S, Mukherjee A (2011) New water resistant biomaterial biocide film based on guar gum. Bioresour Technol 102(10):5878–5883

    Article  CAS  Google Scholar 

  • Deepa B, Abraham E, Cherian BM, Bismarck A, Blaker JJ, Pothan LA, Leao AL, de Souza SF, Kottaisamy M (2011) Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresour Technol 102(2):1988–1997

    Article  CAS  Google Scholar 

  • Fujisawa S, Okita Y, Fukuzumi H, Saito T, Isogai A (2011) Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups. Carbohydr Polym 84(1):579–583

    Article  CAS  Google Scholar 

  • Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10(1):162–165

    Article  CAS  Google Scholar 

  • Ghanbarzadeh B, Oleyaei SA, Almasi H (2015) Nanostructured materials utilized in biopolymer-based plastics for food packaging applications. Crit Rev Food Sci 55(12):1699–1723

    Article  CAS  Google Scholar 

  • Grzadka E (2013) Influence of surfactants on the adsorption and elektrokinetic properties of the system: guar gum/manganese dioxide. Cellulose 20(3):1313–1328

    Article  CAS  Google Scholar 

  • Grzadka E (2014) Stability of manganese dioxide by guar gum in the absence or presence of surfactants. Cellulose 21(3):1641–1654

    Article  CAS  Google Scholar 

  • Hosseinidoust Z, Alam MN, Sim G, Tufenkji N, van de Ven TGM (2015) Cellulose nanocrystals with tunable surface charge for nanomedicine. Nanoscale 7(40):16647–16657

    Article  CAS  Google Scholar 

  • Hu Z, Cranston ED, Ng R, Pelton R (2014) Tuning cellulose nanocrystal gelation with polysaccharides and surfactants. Langmuir 30(10):2684–2692

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466

    Article  CAS  Google Scholar 

  • Kumar AP, Singh RP (2008) Biocomposites of cellulose reinforced starch: improvement of properties by photo-induced crosslinking. Bioresour Technol 99(18):8803–8809

    Article  CAS  Google Scholar 

  • Liu K, Nasrallah J, Chen L, Huang L, Ni Y (2015) Preparation of CNC-dispersed Fe3O4 nanoparticles and their application in conductive paper. Carbohydr Polym 126:175–178

    Article  CAS  Google Scholar 

  • Lucenius J, Parikka K, Osterberg M (2014) Nanocomposite films based on cellulose nanofibrils and water-soluble polysaccharides. React Funct Polym 85:167–174

    Article  CAS  Google Scholar 

  • Mao L, Law K, Claude D, Francois B (2008) Effects of carboxyl content on the characteristics of TMP long fibers. Ind Eng Chem Res 47(11):3809–3812

    Article  CAS  Google Scholar 

  • Mikkonen KS, Heikkila MI, Helen H, Hyvonen L, Tenkanen M (2010) Spruce galactoglucomannan films show promising barrier properties. Carbohydr Polym 79(4):1107–1112

    Article  CAS  Google Scholar 

  • Osterberg M, Vartiainen J, Lucenius J, Hippi U, Seppala J, Serimaa R, Laine J (2013) A fast method to produce strong NFC films as a platform for barrier and functional materials. ACS Appl Mater Interfaces 5(11):4640–4647

    Article  CAS  Google Scholar 

  • Pan Y, Xiao H, Song Z (2013) Hydrophobic modification of cellulose fibres by cationic-modified polyacrylate latex with core–shell structure. Cellulose 20(1):485–494

    Article  CAS  Google Scholar 

  • Rodionova G, Saito T, Lenes M, Eriksen Ø, Gregersen Ø, Fukuzumi H, Isogai A (2012) Mechanical and oxygen barrier properties of films prepared from fibrillated dispersions of TEMPO-oxidized Norway spruce and Eucalyptus pulps. Cellulose 19(3):705–711

    Article  CAS  Google Scholar 

  • Rosiaux Y, Muschert S, Chokshi R, Leclercq B, Siepmann F, Siepmann J (2013) Ethanol-resistant polymeric film coatings for controlled drug delivery. J Control Release 169(1–2):1–9

    Article  CAS  Google Scholar 

  • Saito T, Nishiyama Y, Putaux J-L, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7(6):1687–1691

    Article  CAS  Google Scholar 

  • Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules 10(7):1992–1996

    Article  CAS  Google Scholar 

  • Seantier B, Bendahou D, Bendahou A, Grohens Y, Kaddami H (2016) Multi-scale cellulose based new bio-aerogel composites with thermal super-insulating and tunable mechanical properties. Carbohydr Polym 138:335–348

    Article  CAS  Google Scholar 

  • Shah SWA, Jahangir M, Qaisar M, Khan SA, Mahmood T, Saeed M, Farid A, Liaquat M (2015) Storage stability of kinnow fruit (Citrus reticulata) as affected by CMC and guar gum-based silver nanoparticle coatings. Molecules 20(12):22645–22661

    Article  CAS  Google Scholar 

  • Sharma S, Zhang XD, Nair SS, Ragauskas A, Zhu JY, Deng YL (2014) Thermally enhanced high performance cellulose nano fibril barrier membranes. RSC Adv 4(85):45136–45142

    Article  CAS  Google Scholar 

  • Shimizu M, Fukuzumi H, Saito T, Isogai A (2013) Preparation and characterization of TEMPO-oxidized cellulose nanofibrils with ammonium carboxylate groups. Int J Biol Macromol 59:99–104

    Article  CAS  Google Scholar 

  • Shimizu M, Saito T, Isogai A (2016) Water-resistant and high oxygen-barrier nanocellulose films with interfibrillar cross-linkages formed through multivalent metal ions. J Membr Sci 500:1–7

    Article  CAS  Google Scholar 

  • Song J, Tang A, Liu T, Wang J (2013) Fast and continuous preparation of high polymerization degree cellulose nanofibrils and their three-dimensional macroporous scaffold fabrication. Nanoscale 5(6):2482–2490

    Article  CAS  Google Scholar 

  • Svagan AJ, Samir MASA, Berglund LA (2007) Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromolecules 8(8):2556–2563

    Article  CAS  Google Scholar 

  • Way AE, Hsu L, Shanmuganathan K, Weder C, Rowan SJ (2012) pH-responsive cellulose nanocrystal gels and nanocomposites. ACS Macro Lett 1(8):1001–1006

    Article  CAS  Google Scholar 

  • Wen Y, Zhu X, Gauthier DE, An X, Cheng D, Ni Y, Yin L (2015) Development of poly(acrylic acid)/nanofibrillated cellulose superabsorbent composites by ultraviolet light induced polymerization. Cellulose 22(4):2499–2506

    Article  CAS  Google Scholar 

  • Woehl MA, Ono L, Riegel Vidotti IC, Wypych F, Schreiner WH, Sierakowski MR (2014) Bioactive nanocomposites of bacterial cellulose and natural hydrocolloids. J Mater Chem B 2(40):7034–7044

    Article  CAS  Google Scholar 

  • Wu C-N, Yang Q, Takeuchi M, Saito T, Isogai A (2014) Highly tough and transparent layered composites of nanocellulose and synthetic silicate. Nanoscale 6(1):392–399

    Article  CAS  Google Scholar 

  • Yang H, Tejado A, Alam N, Antal M, van de Ven TGM (2012) Films prepared from electrosterically stabilized nanocrystalline cellulose. Langmuir 28(20):7834–7842

    Article  CAS  Google Scholar 

  • Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17(2):153–155

    Article  CAS  Google Scholar 

  • Zhou W, Chen Z, Oshima N, Ito K, O’Rourke BE, Kuroda R, Suzuki R, Yanagishita H, Tsutsui T, Uedono A, Hayashizaki N (2012) In-situ characterization of free-volume holes in polymer thin films under controlled humidity conditions with an atmospheric positron probe microanalyzer. Appl Phys Lett 101(1):014102–014104

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (31270633), State Key Laboratory of Pulp and Paper Engineering (201512), Creative Fund of Combination of Industry, Academia and Research of Jiangsu Province, China-Prospective Joint Research Project (BY2013015-03) and Top-notch Academic Programs Project of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu Long.

Ethics declarations

Conflict of interest

All the coauthors of this work are included in this manuscript and they all endorse this submission. There are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, L., Long, Z., Zhao, Y. et al. Comparison of hydroxypropyl and carboxymethyl guar for the preparation of nanocellulose composite films. Cellulose 23, 2989–2999 (2016). https://doi.org/10.1007/s10570-016-0998-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-0998-7

Keywords

Navigation