Grinding process for the production of nanofibrillated cellulose based on unbleached and bleached bamboo organosolv pulp

Abstract

Nanofibrillated cellulose (NFC) is a type of nanomaterial based on renewable resources and produced by mechanical disintegration without chemicals. NFC is a potential reinforcing material with a high surface area and high aspect ratio, both of which increase reinforcement on the nanoscale. The raw materials used were unbleached and bleached bamboo organosolv pulp. Organosolv pulping is a cleaner process than other industrial methods (i.e. Kraft process), as it uses organic solvents during cooking and provides easy solvent recovery at the end of the process. The NFC was produced by treating unbleached and bleached bamboo organosolv pulps for 5, 10, 15 and 20 nanofibrillation cycles using the grinding method. Chemical, physical and mechanical tests were performed to determine the optimal condition for nanofibrillation. The delamination of the S2 layer of the fibers during nanofibrillation contributed to the partial removal of amorphous components (mainly lignin), which have low polarity and improved the adhesion of the fibers, particularly the unbleached cellulose. The transverse modulus of elasticity of the unbleached NFC was highest after 10 nanofibrillation cycles. Further treatment cycles decreased the modulus due to the mechanical degradation of the fibers. The unbleached NFC produced by 10 cycles have a greater transverse modulus of elasticity, the crystallite size showed increase with the nanofibrillation, and after 5 nanofibrillation cycles, no differences are observed in the morphology of the fibers.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues—Wheat straw and soy hulls. Bioresour Technol 99:1664–1671. doi:10.1016/j.biortech.2007.04.029

    CAS  Article  Google Scholar 

  2. Ardanuy M, Claramunt J, Arévalo R, Parés F (2012) Nanofibrillated cellulose (NFC) as a potential reinforcement for high performance cement mortar composites. BioResources 3:3883–3894

    Google Scholar 

  3. Arrakhiz FZ, Elachaby M, Bouhfid R, Vaudreuil S, Essassi M, Qaiss A (2012) Mechanical and thermal properties of polypropylene reinforced with Alfa fiber under different chemical treatment. Mater Des 35:318–322. doi:10.1016/j.matdes.2011.09.023

    CAS  Article  Google Scholar 

  4. Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054. doi:10.1021/bm049300p

    CAS  Article  Google Scholar 

  5. Butt HJ, Cappella B, Kappl M (2005) Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep 59:1–152. doi:10.1016/j.surfrep.2005.08.003

    CAS  Article  Google Scholar 

  6. Carey FA, Sundberg RJ (2007) Advanced organic chemistry. Part A: structure and mechanisms, 5th edn. Springer Science, New York

    Google Scholar 

  7. Chen L, Li A, He X, Han L (2015a) A multi-scale biomechanical model based on the physiological structure and lignocellulose components of wheat Straw. Carbohydr Polym 133:135–143. doi:10.1016/j.carbpol.2015.07.002

    CAS  Article  Google Scholar 

  8. Chen P, Ogawa Y, Nishiyama Y, Bergenstråhle-Wohlert M, Mazeau K (2015b) Alternative hydrogen bond models of cellulose II and IIII based on molecular force-fields and density functional theory. Cellulose 22:1485–1493. doi:10.1007/s10570-015-0589-z

    CAS  Article  Google Scholar 

  9. Correia VC, Santos SF, Mármol G, Curvelo AAS, Savastano H Jr (2014) Potential of bamboo organosolv pulp as reinforcement element in fiber-cement. Constr Build Mater 72:65–71. doi:10.1016/j.conbuildmat.2014.09.005

    Article  Google Scholar 

  10. Correia VC, Curvelo AAS, Marabezi K, Almeida AEFS, Savastano H Jr (2015) Bamboo cellulosic pulp produced by the etanol/water process for reinforcement applications. Ciênc Florest 25:127–135

    Article  Google Scholar 

  11. Coutts RSP, Ni Y (1995) Autoclaved Bamboo pulp fibre reinforced cement. Cem Concr Compos 17:99–106. doi:10.1016/0958-9465(94)00002-G

    CAS  Article  Google Scholar 

  12. Cranston ED, Eita M, Johansson E, Netrval J, Salajková M, Arwin H, Wagberg L (2011) Determination of Young’s modulus for nanofibrillated cellulose multilayer thin films using buckling mechanics. Biomacromolecules 12:961–969. doi:10.1021/bm101330w

    CAS  Article  Google Scholar 

  13. Czaja WK, Young DJ, Kawecki M, Brow RM Jr (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12. doi:10.1021/bm060620d

    CAS  Article  Google Scholar 

  14. Derjaguin BV, Muller VM, Toporov YP (1975) Effect of contact deformations on the adhesion of particles. J Colloid Interf Sci 53:314–326. doi:10.1016/0021-9797(75)90018-1

    CAS  Article  Google Scholar 

  15. Dokukin M, Sokolov I (2012) On quantitative mapping of elastic modulus of soft materials with HarmoniX and PeakForce QNM AFM modes. Langmuir 28:16060–16071. doi:10.1021/la302706b

    CAS  Article  Google Scholar 

  16. Dufresne A (2006) Comparing the mechanical properties of high performances polymer nanocomposites from biological sources. J Nanosci Nanotechnol 6:322–330. doi:10.1166/jnn.2006.005

    CAS  Article  Google Scholar 

  17. Fardim P, Durán N (2003) Modification of fibre surfaces during pulping and refining as analysed by SEM, XPS and ToF-SIMS. Colloid Surf A 223:263–276. doi:10.1016/S0927-7757(03)00149-3

    CAS  Article  Google Scholar 

  18. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. doi:10.1007/s10570-013-0030-4

    CAS  Article  Google Scholar 

  19. French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index. Cellulose 20:583–588. doi:10.1007/s10570-012-9833-y

    CAS  Article  Google Scholar 

  20. Gardner DJ, Oporto GS, Mills R, Samir MASA (2008) Adhesion and surface issues in cellulose and nanocellulose. J Adhes Sci Technol 22:545–567. doi:10.1163/156856108X295509

    CAS  Article  Google Scholar 

  21. González M, Cantón L, Rodríguez A, Labidi J (2008) Effect of organosolv and soda pulping processes on the metals contente of non-woody pulps. Bioresour Technol 99:6621–6625. doi:10.1016/j.biortech.2007.12.038

    Article  Google Scholar 

  22. Guimarães M Jr, Botaro VR, Novack KM, Teixeira FG, Tonoli GHD (2015) Starch/PVA-based nanocomposites reinforced with bamboo nanofibrils. Ind Crop Prod 70:72–83. doi:10.1016/j.indcrop.2015.03.014

    Article  Google Scholar 

  23. Haafiz MKM, Eichhorn SJ, Hassan A, Jawaid M (2013) Isolation and characterization of microcrystalline cellulose from oil palm biomass residue. Carbohydr Polym 93:628–634. doi:10.1016/j.carbpol.2013.01.035

    Article  Google Scholar 

  24. Hassan ML, Mathew AP, Hassan EA, El-Wakil N, Oksman K (2012) Nanofibers from bagasse and rice straw: process optimization and properties. Wood Sci Technol 46:193–205. doi:10.1007/s00226-010-0373-z

    CAS  Article  Google Scholar 

  25. Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci 37:797–813

    CAS  Google Scholar 

  26. Hoyos CG, Cristia E, Vázquez A (2013) Effect of celulose microcrystalline particles on properties of cement based composites. Mater Des 51:810–818. doi:10.1016/j.matdes.2013.04.060

    Article  Google Scholar 

  27. Hubbel CA, Ragauskas AJ (2010) Effect of acid-chlorite delignification on cellulose degree of polymerization. Bioresour Technol 101:7410–7415. doi:10.1016/j.biortech.2010.04.029

    Article  Google Scholar 

  28. Iwamoto S, Nakagaito AN, Yano H, Nogi M (2005) Optically transparent composites reinforced with plant fibers-based nanofibers. Appl Phys A Mater 81:1109–1112. doi:10.1007/s00339-005-3316-z

    CAS  Article  Google Scholar 

  29. Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A Mater 89:461–466. doi:10.1007/s00339-007-4175-6

    CAS  Article  Google Scholar 

  30. Iwamoto S, Abe K, Yano H (2008) The effect of hemicellulose on wood pulp nanofibrilation and nanofiber network characteristics. Biomacromolecules 9:1022–1026. doi:10.1021/bm701157n

    CAS  Article  Google Scholar 

  31. Iwamoto S, Kai WH, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10:2571–2576. doi:10.1021/bm900520n

    CAS  Article  Google Scholar 

  32. Jiménez L, Rodríguez A, Serrano L, Moral A (2008) Organosolv ethanolamine pulping of olive wood: influence of the process variables on the strength properties. Biochem Eng J 39:230–235. doi:10.1016/j.bej.2007.09.006

    Article  Google Scholar 

  33. Jonoobi M, Harun J, Shakeri A, Misra M, Oksman K (2009) Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers. BioResources 4:626–639

    CAS  Google Scholar 

  34. Jonoobi M, Harun J, Tahir PM, Shakeri A, SaifulAzry S, Makinejad MD (2011) Physicochemical characterization of pulp and nanofibers from kenaf stem. Mater Lett 65:1098–1100. doi:10.1016/j.matlet.2010.08.054

    CAS  Article  Google Scholar 

  35. Kamel S (2007) Nanotechnology and its applications in lignocellulosic composites, a mini review. Express Polym Lett 1:546–575. doi:10.3144/expresspolymlett.2007.78

    CAS  Article  Google Scholar 

  36. Kim U-J, Eom SH, Wada M (2010) Thermal decomposition of native cellulose: influence on crystallite size. Polym Degrad Stab 95:778–781. doi:10.1016/j.polymdegradstab.2010.02.009

    CAS  Article  Google Scholar 

  37. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393. doi:10.1002/chin.200536238

    CAS  Article  Google Scholar 

  38. Langford JI, Wilson AJC (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Cryst 11:102–113. doi:10.1107/S0021889878012844

    CAS  Article  Google Scholar 

  39. Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764. doi:10.1016/j.carbpol.2012.05.026

    CAS  Article  Google Scholar 

  40. Law KN, Lo SN, Valade JL (1985) Beating behavior of sulphite-mechanical hardwood pulps. Pulp Pap Can 86:70–74

    CAS  Google Scholar 

  41. Li R, Fei J, Cai Y, Li Y, Feng J, Yao J (2009) Cellulose whiskers extracted from mulberry: a novel biomass production. Carbohydr Polym 76:94–99. doi:10.1016/j.carbpol.2008.09.034

    CAS  Article  Google Scholar 

  42. Liang K, Shi SQ, Wang G (2014) Effect of impregnated inorganic nanoparticles on the properties of the kenaf bast fibers. Fibers 2:242–254. doi:10.3390/fib2030242

    CAS  Article  Google Scholar 

  43. Liu C-F, Sun R-C (2010) Cellulose. In: Sun R-C (ed) Cereal straw as a resource for sustainable biomaterials and biofuels: chemistry, extratives, lignins, hemicellulose and cellulose. Elsevier, Oxford, pp 131–167

    Google Scholar 

  44. Lu J, Askeland P, Drzal LT (2008) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49:1285–1296. doi:10.1016/j.polymer.2008.01.028

    CAS  Article  Google Scholar 

  45. Lu Q, Liu W, Yang L, Zu Y, Zu B, Zhu M, Zhang Y, Zhang X, Zhang R, Sun Z, Huang J, Zhang X, Li W (2012) Investigation of the effects of different organosolv pulping methods on antioxidant capacity and extraction efficiency of lignin. Food Chem 131:313–317. doi:10.1016/j.foodchem.2011.07.116

    CAS  Article  Google Scholar 

  46. Lu T, Jiang M, Jiang Z, Hui D, Wang Z, Zhou Z (2013) Effect of surface modification of bamboo cellulose fibers on mechanical properties of cellulose/epoxy composites. Compos Part B Eng 51:28–34. doi:10.1016/j.compositesb.2013.02.031

    CAS  Article  Google Scholar 

  47. Macrae CF, Gruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, Van de Streek J, Wood PA (2008) Mercury CSD 2.0-new features for the visualization and investigation of crystal structures. J Appl Crystallogr 41:466–470. doi:10.1107/S0021889807067908

    CAS  Article  Google Scholar 

  48. Marton R, Goff S, Brown AF, Granzow S (1979) Hardwood TMP and RMP modifications. Tappi 62:49–53

    CAS  Google Scholar 

  49. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. doi:10.1039/c0cs00108b

    CAS  Article  Google Scholar 

  50. Morais JPS, Rosa MF, Marconcini JM (2010) Procedimentos para análise lignocelulósica. Documentos, Embrapa, São Carlos

    Google Scholar 

  51. Mukherjee PS, Satynarayana KG (1984) Structure and properties of some vegetable fibres: Part 1—Sisal fibre. J Mater Sci 19:3925–3934. doi:10.1007/BF00980755

    CAS  Article  Google Scholar 

  52. Mwaikambo LY (2009) Tensile properties of alkalised jute fibres. BioResources 4:566–588

    CAS  Google Scholar 

  53. Nakagaito AN, Yano H (2004) The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl Phys A Mater 78:547–552. doi:10.1007/s00339-003-2453-5

    CAS  Article  Google Scholar 

  54. Nam S, French AD, Condon BD, Concha M (2016) Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose. Carbohydr Polym 135:1–9. doi:10.1016/j.carbpol.2015.08.035

    CAS  Article  Google Scholar 

  55. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082. doi:10.1021/ja0257319

    CAS  Article  Google Scholar 

  56. Pääkko M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941. doi:10.1021/bm061215p

    Article  Google Scholar 

  57. Poletto M, Ornaghi HL Jr, Zattera A (2014) Native cellulose: structure, characterization and thermal properties. Materials 7:6105–6119. doi:10.3390/ma7096105

    CAS  Article  Google Scholar 

  58. Ruzene DS, Gonçalves AR, Teixeira JA, Amorim MTP (2007) Carboxymethylcellulose obtained by ethanol/water organosolv process under acid conditions. Appl Biochem Biotechnol 136–140:543–582. doi:10.1007/s12010-007-9080-0

    Google Scholar 

  59. Sahin HT, Young RA (2008) Auto-catalyzed acetic acid pulping of jute. Ind Crop Prod 28:24–28. doi:10.1016/j.indcrop.2007.12.008

    CAS  Article  Google Scholar 

  60. Sarkanen KV (1990) Chemistry of solvent pulping. Tappi J 73:215–219

    CAS  Google Scholar 

  61. Shatalov AA, Pereira H (2005) Kinetics of polysaccharide degradation during ethanol–alkali delignification of giant reed—Part 1. Cellulose and xylan. Carbohydr Polym 59:435–442. doi:10.1016/j.carbpol.2004.10.010

    CAS  Article  Google Scholar 

  62. Silverstein RM, Kiemle DJ, Bryce DL (2005) Spectrometric identification of organic compunds, 7th edn. Wiley, New York

    Google Scholar 

  63. Siqueira G, Várnai A, Ferraz A, Milagres AMF (2013) Enhancement of cellulose hydrolysis in sugarcane bagasse by the selective removal of lignin with sodium chlorite. Appl Energy 102:399–402. doi:10.1016/j.apenergy.2012.07.029

    CAS  Article  Google Scholar 

  64. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494. doi:10.1007/s10570-010-9405-y

    Article  Google Scholar 

  65. Solomons TWG, Fryhle CB (2000) Organic chemistry, 7th edn. Wiley, New York

    Google Scholar 

  66. Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose 17:835–848. doi:10.1007/s10570-010-9424-8

    CAS  Article  Google Scholar 

  67. Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2011) A comparative study of energy consumption and physical properties of microfibrillated celulose produced by different processing methods. Cellulose 18:1097–1111. doi:10.1007/s10570-011-9533-z

    CAS  Article  Google Scholar 

  68. Subramanian R, Knononov A, Kang T, Paltakari J, Paulapura H (2008) Structure and properties of some natural cellulosic fibrils. BioResources 3:192–203

    Google Scholar 

  69. Tang X, Alavi S (2011) Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and their biodegradability. Carbohydr Polym 85:7–11. doi:10.1016/j.carbpol.2011.01.030

    CAS  Article  Google Scholar 

  70. Taniguchi T, Okamura K (1998) New films produced from microfibrillated natural fibres. Polym Int 47:291–294. doi:10.1002/(SICI)1097-0126(199811)47:3<291:AID-PI11>3.0.CO;2-1

    CAS  Article  Google Scholar 

  71. Technical Association of the Pulp and Paper Industry. Tappi (1997) Tappi Test Methods, T 204 cm-97: Solvent extractives of wood and pulp. Tappi Press, Atlanta

    Google Scholar 

  72. Technical Association of the Pulp and Paper Industry. Tappi (1998) Tappi Test Methods, T 222 om-98: Acid-insoluble lignin in wood and pulp. Tappi Press, Atlanta

    Google Scholar 

  73. Thuault A, Domengès B, Hervas I, Gomina M (2015) Investigation of the internal structure of flax fibre cell walls by transmission electron microscopy. Cellulose 22:3521–3530. doi:10.1007/s10570-015-0744-6

    CAS  Article  Google Scholar 

  74. Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses and commercial potential. J Appl Polym Sci 37:815–827

    CAS  Google Scholar 

  75. VanderHart DL, Atalla RH (1984) Studies of microstructure in native celluloses using solid-state 13C NMR. Macromolecules 17(8):1465–1472. doi:10.1021/ma00138a009

    CAS  Article  Google Scholar 

  76. Vázquez G, Freire S, Bona CR, González J, Antorrena G (1999) Structures and reactivities with formaldehyde of some acetosolv pine lignins. J Wood Chem Technol 19:357–378. doi:10.1080/02773819909349617

    Article  Google Scholar 

  77. Wang QQ, Zhu JY, Gleisner R, Kuster TA, Baxa U, McNeil SE (2012) Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation. Cellulose 19:1631–1643. doi:10.1007/s10570-012-9745-x

    CAS  Article  Google Scholar 

  78. Xie X, Zhou Z, Jiang M, Xu X, Wang Z, Hui D (2015) Cellulosic fibers from rice straw and bamboo used as reinforcement of cement-based composites for remarkably improving mechanical properties. Compos Part B Eng 78:153–161. doi:10.1016/j.compositesb.2015.03.086

    CAS  Article  Google Scholar 

  79. Zhao G, Lai R, He B, Greschik T, Li X (2010) Replacement of softwood kraft pulp with ECF-bleached bamboo kraft pulp fine paper. Bioresources 5(3):1733–1744. http://ncsu.edu/bioresources. ISSN: 1930-212

  80. Zimmermann T, Pohler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6:754–761. doi:10.1002/adem.200400097

    Article  Google Scholar 

Download references

Acknowledgments

The authors were supported by Grants offered by Research Foundation of the Sao Paulo State - FAPESP, Brazil (Grants no: 2011/01128-5; 2013/50790-8; 2013/23810-8; 2009/17293-5 and 2010/16524-0) and National Council for Scientific and Technological Development – CNPq, Brazil (Grants no: 142082/2011-2 and 306386/2013-5). The authors also acknowledge the Department of Foreign Affairs and International Trade (DFAIT), Canada, and Coordination for the Improvement of Higher Education Personnel (CAPES), Brazil; Research Nucleus on Material for Biosystems (NAP-BIOSMAT, Grant no. USP 12.1.17620.1.9), Brazil; Canadian Bureau for International Education – CBIE, Canada and Natural Sciences and Engineering Research Council of Canada (NSERC) by funding.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Viviane da Costa Correia.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Correia, V.C., dos Santos, V., Sain, M. et al. Grinding process for the production of nanofibrillated cellulose based on unbleached and bleached bamboo organosolv pulp. Cellulose 23, 2971–2987 (2016). https://doi.org/10.1007/s10570-016-0996-9

Download citation

Keywords

  • Nanofibrillation
  • Cellulose
  • Grinding
  • Reinforcement