Skip to main content

Applications of bacterial cellulose in food, cosmetics and drug delivery

Abstract

Bacterial cellulose (BC) is a versatile biopolymer with better material properties, such as purity, high degree of porosity, relative high permeability to liquid and gases, high water-uptake capacity, tensile strength and ultrafine network. This review explores the applications of BC and its hydrogels in the fields of food, cosmetics and drug delivery. Applications of BC in foods are ranging from traditional dessert, low cholesterol diet, vegetarian meat, and as food additive and dietary aid to novel applications, such as immobilization of enzymes and cells. Applications in cosmetics include facial mask, facial scrub, personal cleansing formulations and contact lenses. BC for controlled drug delivery, transdermal drug delivery, dental drug delivery, protein delivery, tissue engineering drug delivery, macromolecular prodrug delivery and molecularly imprinted polymer based enantioselective drug delivery are also discussed in this review. The applications of BC in food and cosmetics provide the basis for BC-based functional foods, nutraceuticals, cosmeceuticals and medicated cosmetics. On the basis of current studies, the BC-based drug delivery could be further fine-tuned to get more sophisticated control on stimuli-responsive drug release. Along with the currently available literature, further experiments are required to obtain a blueprint of drug in vivo performance, bioavailability and in vitro–in vivo correlation.

This is a preview of subscription content, access via your institution.

Fig. 1

Adapted with permission from Lin et al. (2013)

Fig. 2
Fig. 3
Fig. 4

References

  1. Ahmad N, Amin MCIM, Mahali SM, Ismail I, Chuang VTG (2014) Biocompatible and mucoadhesive bacterial cellulose-g-poly (acrylic acid) hydrogels for oral protein delivery. Mol Pharm 11:4130–4142

    CAS  Article  Google Scholar 

  2. Almeida IF, Pereira T, Silva NH, Gomes FP, Silvestre AJ, Freire CS, Sousa Lobo JM, Costa PC (2014) Bacterial cellulose membranes as drug delivery systems: an in vivo skin compatibility study. Eur J Pharm Biopharm 86:332–336

    CAS  Article  Google Scholar 

  3. Amin MCIM, Abadi AG, Ahmad N, Katas H, Jamal JA (2012a) Bacterial cellulose film coating as drug delivery system: physicochemical, thermal and drug release properties. Sains Malays 41:561–568

    CAS  Google Scholar 

  4. Amin MCIM, Ahmad N, Halib N, Ahmad I (2012b) Synthesis and characterization of thermo-and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydr Polym 88:465–473

    Article  CAS  Google Scholar 

  5. Amin MCIM, Ahmad N, Pandey M, Xin CJ (2014) Stimuli-responsive bacterial cellulose-g-poly (acrylic acid-co-acrylamide) hydrogels for oral controlled release drug delivery. Drug Dev Ind Pharm 40:1340–1349

    Article  CAS  Google Scholar 

  6. Amnuaikit T, Chusuit T, Raknam P, Boonme P (2011) Effects of a cellulose mask synthesized by a bacterium on facial skin characteristics and user satisfaction. Med Devices 4:77–81

    Google Scholar 

  7. Aramwit P, Bang N (2014) The characteristics of bacterial nanocellulose gel releasing silk sericin for facial treatment. BMC Biotechnol 14:104

    Article  CAS  Google Scholar 

  8. Benbow M, Stevens J (2010) Exudate, infection and patient quality of life. Br J Nur 19:S32–S36

    Article  Google Scholar 

  9. Bodhibukkana C, Srichana T, Kaewnopparat S, Tangthong N, Bouking P, Martin GP, Suedee R (2006) Composite membrane of bacterially-derived cellulose and molecularly imprinted polymer for use as a transdermal enantioselective controlled-release system of racemic propranolol. J Control Rel 113:43–56

    CAS  Article  Google Scholar 

  10. Bodin A, Concaro S, Brittberg M, Gatenholm P (2007) Bacterial cellulose as a potential meniscus implant. J Tissue Eng Regen Med 1:406–408

    CAS  Article  Google Scholar 

  11. Brown AJ (1886a) XIX.–The chemical action of pure cultivations of bacterium aceti. J Chem Soc Trans 49:172–187

    CAS  Article  Google Scholar 

  12. Brown AJ (1886b) XLIII.—On an acetic ferment which forms cellulose. J Chem Soc Trans 49:432–439

    CAS  Article  Google Scholar 

  13. Bruno BJ, Miller GD, Lim CS (2013) Basics and recent advances in peptide and protein drug delivery. Ther Deliv 4:1443–1467

    CAS  Article  Google Scholar 

  14. Butchosa N, Brown C, Larsson PT, Berglund LA, Bulone V, Zhou Q (2013) Nanocomposites of bacterial cellulose nanofibers and chitin nanocrystals: fabrication, characterization and bactericidal activity. Green Chem 15:3404–3413

    CAS  Article  Google Scholar 

  15. Campano C, Balea A, Blanco A, Negro C (2015) Enhancement of the fermentation process and properties of bacterial cellulose: a review. Cellulose 23:1–35

    Google Scholar 

  16. Chau C-F, Yang P, Yu C-M, Yen G-C (2008) Investigation on the lipid-and cholesterol-lowering abilities of biocellulose. J Agric Food Chem 56:2291–2295

    CAS  Article  Google Scholar 

  17. Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial cellulose: fermentative production and applications. Food Technol Biotechnol 47:107–124

    CAS  Google Scholar 

  18. Chen X, Chen Z, Zhu J, Xu C, Yan W, Yao C (2011) A novel H2O2 amperometric biosensor based on gold nanoparticles/self-doped polyaniline nanofibers. Bioelectrochemistry 82:87–94

    CAS  Article  Google Scholar 

  19. Chen L, Zou M, Hong FF (2015) Evaluation of fungal laccase immobilized on natural nanostructured bacterial cellulose. Front Microbiol 6:1245

    Google Scholar 

  20. Czaja W, Romanovicz D, Brown RM (2004) Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11:403–411

    CAS  Article  Google Scholar 

  21. Czaja W, Krystynowicz A, Bielecki S, Brown RM (2006) Microbial cellulose—the natural power to heal wounds. Biomaterials 27:145–151

    CAS  Article  Google Scholar 

  22. Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12

    CAS  Article  Google Scholar 

  23. Darbre PD, Harvey PW (2008) Paraben esters: review of recent studies of endocrine toxicity, absorption, esterase and human exposure, and discussion of potential human health risks. J Appl Toxicol 28:561–578

    CAS  Article  Google Scholar 

  24. De Groot AS, Martin W (2009) Reducing risk, improving outcomes: bioengineering less immunogenic protein therapeutics. Clin Immunol 131:189–201

    Article  CAS  Google Scholar 

  25. Dobre ML, Stoica-Guzun A (2013) Antimicrobial Ag-polyvinyl alcohol-bacterial cellulose composite films. J Biobased Mater Bioenergy 7:157–162

    CAS  Article  Google Scholar 

  26. Dobre L-M, Stoica-Guzun A, Stroescu M, Jipa I, Dobre T, Ferdeş M, Ciumpiliac Ş (2012) Modelling of sorbic acid diffusion through bacterial cellulose-based antimicrobial films. Chem Pap 66:144–151

    CAS  Article  Google Scholar 

  27. Draelos Z, Hornby S, Walters RM, Appa Y (2013) Hydrophobically modified polymers can minimize skin irritation potential caused by surfactant-based cleansers. J Cosmet Dermatol 12:314–321

    Article  Google Scholar 

  28. Dufresne A (2013) Nanocellulose: from nature to high performance tailored materials. Walter de Gruyter, Berlin

    Google Scholar 

  29. Ellis B, Smith R (2008) Polymers: a property database. CRC Press, Boca Raton

    Google Scholar 

  30. Fernandes P (2010) Enzymes in food processing: a condensed overview on strategies for better biocatalysts. Enzyme Res Article ID 862537. doi:10.4061/2010/862537

  31. Fu L, Zhang Y, Li C, Wu Z, Zhuo Q, Huang X, Qiu G, Zhou P, Yang G (2012) Skin tissue repair materials from bacterial cellulose by a multilayer fermentation method. J Mater Chem 22:12349–12357

    CAS  Article  Google Scholar 

  32. Gayathry G, Gopalaswamy G (2014) Production and characterisation of microbial cellulosic fibre from Acetobacter xylinum. Indian J Fibre Text Res 39:93–96

    CAS  Google Scholar 

  33. Haemmerle G, Signer M, Mittlboeck M (2012) Comparison of PHMB-containing dressing and silver dressings in patients with critically colonised or locally infected wounds. J Wound Care 21:13–19

    Google Scholar 

  34. Harris JM, Chess RB (2003) Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2:214–221

    CAS  Article  Google Scholar 

  35. Hasan N, Biak DRA, Kamarudin S (2012) Application of bacterial cellulose (BC) in natural facial scrub. IJASEIT 2:1–4

    Google Scholar 

  36. Heath BP, Coffindaffer TW, Kyte III KE, Smith III ED, McConaughy SD (2012) Personal cleansing compositions comprising a bacterial cellulose network and cationic polymer. US patent, US 8097574 B2

  37. Helenius G, Bäckdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B (2006) In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res A 76:431–438

    Article  CAS  Google Scholar 

  38. Huang L, Chen X, Nguyen TX, Tang H, Zhang L, Yang G (2013) Nano-cellulose 3D-networks as controlled-release drug carriers. J Mater Chem B 1:2976–2984

    CAS  Article  Google Scholar 

  39. Hubbell JA (1995) Biomaterials in tissue engineering. Nat Biotechnol 13:565–576

    CAS  Article  Google Scholar 

  40. Hui J, Yuanyuan J, Jiao W, Yuan H, Yuan Z, Shiru J (2009) Potentiality of bacterial cellulose as the scaffold of tissue engineering of cornea. In: Biomedical engineering and informatics, 2009. 2nd international conference, IEEE, Tianjin, China, pp 1–5

  41. Hussain MA, Badshah M, Iqbal MS, Tahir MN, Tremel W, Bhosale SV, Sher M, Haseeb MT (2009) HPMC-salicylate conjugates as macromolecular prodrugs: design, characterization, and nano-rods formation. J Polym Sci Part A Polym Chem 47:4202–4208

    CAS  Article  Google Scholar 

  42. Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci 35:261–270

    CAS  Article  Google Scholar 

  43. Jay JM, Loessner MJ, Golden DA (2008) Modern food microbiology. Springer, New York

    Google Scholar 

  44. Jipa IM, Stoica-Guzun A, Stroescu M (2012) Controlled release of sorbic acid from bacterial cellulose based mono and multilayer antimicrobial films. LWT Food Sci Technol 47:400–406

    CAS  Article  Google Scholar 

  45. Jůzlová P, Martinkova L, Křen V (1996) Secondary metabolites of the fungus Monascus: a review. J Ind Microbiol 16:163–170

    Article  Google Scholar 

  46. Kaliyaperumal A, Jing S (2009) Immunogenicity assessment of therapeutic proteins and peptides. Curr Pharm Biotechnol 10:352–358

    CAS  Article  Google Scholar 

  47. Kaplan E, Ince T, Yorulmaz E, Yener F, Harputlu E, Laçin NT (2014) Controlled delivery of ampicillin and gentamycin from cellulose hydrogels and their antibacterial efficiency. J Biomater Tissue Eng 4:543–549

    CAS  Article  Google Scholar 

  48. Khan T, Park JK, Kwon J-H (2007) Functional biopolymers produced by biochemical technology considering applications in food engineering. Korean J Chem Eng 24:816–826

    CAS  Article  Google Scholar 

  49. Khan S, Ul-Islam M, Khattak WA, Ullah MW, Park JK (2015) Bacterial cellulose-titanium dioxide nanocomposites: nanostructural characteristics, antibacterial mechanism, and biocompatibility. Cellulose 22:565–579

    CAS  Article  Google Scholar 

  50. Kilara A, Shahani KM, Shukla TP (1979) The use of immobilized enzymes in the food industry: a review. Crit Rev Food Sci Nutr 12:161–198

    CAS  Article  Google Scholar 

  51. Kirdponpattara S, Phisalaphong M (2013) Bacterial cellulose-alginate composite sponge as a yeast cell carrier for ethanol production. Biochem Eng J 77:103–109

    CAS  Article  Google Scholar 

  52. Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603

    CAS  Article  Google Scholar 

  53. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    CAS  Article  Google Scholar 

  54. Klemm D, Schumann D, Kramer F, Heßler N, Hornung M, Schmauder H-P, Marsch S (2006) Nanocelluloses as innovative polymers in research and application. Adv Polym Sci 295:49–96

    Article  CAS  Google Scholar 

  55. Koohi MK, Hejazy M, Asadi F, Asadian P (2011) Assessment of dermal exposure and histopathologic changes of different sized nano-silver in healthy adult rabbits. J Phys Conf Ser 304:012028

    Article  CAS  Google Scholar 

  56. Korani M, Rezayat SM, Bidgoli SA (2013) Sub-chronic dermal toxicity of silver nanoparticles in guinea pig: special emphasis to heart, bone and kidney toxicities. Iran J Pharm Res 12:511–519

    CAS  Google Scholar 

  57. Koutinas AA, Sypsas V, Kandylis P, Michelis A, Bekatorou A, Kourkoutas Y, Kordulis C, Lycourghiotis A, Banat IM, Nigam P, Marchant R (2012) Nano-tubular cellulose for bioprocess technology development. PLoS ONE 7:e34350

    CAS  Article  Google Scholar 

  58. Krystynowicz A, Czaja W, Wiktorowska-Jezierska A, Gonçalves-Miśkiewicz M, Turkiewicz M, Bielecki S (2002) Factors affecting the yield and properties of bacterial cellulose. J Ind Microbiol Biotechnol 29:189–195

    CAS  Article  Google Scholar 

  59. Kuehl BL, Fyfe KS, Shear NH (2003) Cutaneous cleansers. Skin Ther Lett 8(3):1–4

    CAS  Google Scholar 

  60. Lee CK, Hsu KC, Cho JC, Kim YJ, Han SH (2011) Cosmetic bio-cellulose mask pack sheet and method for manufacturing same. US patent, US 20130244977 A1

  61. Legendre JY (2008) Assembly comprising a substrate comprising biocellulose, and a powdered cosmetic composition to be brought into contact with the substrate. US patent, US 20090041815 A1

  62. Levinson DJ, Glonek T (2010) Microbial cellulose contact lens. US patents, US 7832857 B2

  63. Li X, Wan W, Panchal CJ (2010) Transparent bacterial cellulose nanocomposite hydrogels. US patent, US 8940337 B2

  64. Lin K, Lin H (2004) Quality characteristics of chinese-style meatball containing bacterial cellulose (nata). J Food Sci 69:SNQ107–SNQ111

    CAS  Google Scholar 

  65. Lin SP, Calvar IL, Catchmark JM, Liu JR, Demirci A, Cheng KC (2013) Biosynthesis, production and applications of bacterial cellulose. Cellulose 20:2191–2219

    CAS  Article  Google Scholar 

  66. Lin SP, Hsieh SC, Chen KI, Demirci A, Cheng KC (2014) Semi-continuous bacterial cellulose production in a rotating disk bioreactor and its materials properties analysis. Cellulose 21:835–844

    CAS  Article  Google Scholar 

  67. Lin Y-C, Wey Y-C, Lee M-L, Lin P-C (2015) Cosmetic composition containing fragments of bacterial cellulose film and method for manufacturing thereof. US patent, US 20150216784 A1

  68. Lin SP, Liu CT, Hsu KD, Hung YT, Shih TY, Cheng KC (2016) Production of bacterial cellulose with various additives in a PCS rotating disk bioreactor and its material property analysis. Cellulose 3:367–377

    Article  CAS  Google Scholar 

  69. Lu W, Senapati D, Wang S, Tovmachenko O, Singh AK, Yu H, Ray PC (2010) Effect of surface coating on the toxicity of silver nanomaterials on human skin keratinocytes. Checm Phys Lett 487:92–96

  70. Luan J, Wu J, Zheng Y, Song W, Wang G, Guo J, Ding X (2012) Impregnation of silver sulfadiazine into bacterial cellulose for antimicrobial and biocompatible wound dressing. Biomed Mater 7:065006

    Article  CAS  Google Scholar 

  71. Lv P, Feng Q, Wang Q, Li G, Li D, Wei Q (2016) Biosynthesis of bacterial cellulose/carboxylic multi-walled carbon nanotubes for enzymatic biofuel cell application. Materials 9:183

    Article  Google Scholar 

  72. Malik NN (2008) Drug discovery: past, present and future. Drug Discov Today 13:909–912

    Article  Google Scholar 

  73. Manning MC, Patel K, Borchardt RT (1989) Stability of protein pharmaceuticals. Pharm Res 6:903–918

    CAS  Article  Google Scholar 

  74. Manning MC, Chou DK, Murphy BM, Payne RW, Katayama DS (2010) Stability of protein pharmaceuticals: an update. Pharm Res 27:544–575

    Article  CAS  Google Scholar 

  75. Millon L, Wan W (2006) The polyvinyl alcohol–bacterial cellulose system as a new nanocomposite for biomedical applications. J Biomed Mater Res B Appl Biomater 79:245–253

    CAS  Article  Google Scholar 

  76. Montealegre CM, Dionisio ER, Sumera LV, Adolacion JR, De Leon RL (2012) A comparison between the performance of S. cerevisiae cells immobilized in nata de coco biocellulose and calcium alginate during continuous bioethanol production. Int J Chem Eng Appl 3:237–242

    CAS  Google Scholar 

  77. Mori R, Nakai T, Enomoto K, Uchio Y, Yoshino K (2011) Increased antibiotic release from a bone cement containing bacterial cellulose. Clin Orthop Relat Res 469:600–606

    Article  Google Scholar 

  78. Müller A, Ni Z, Hessler N, Wesarg F, Müller FA, Kralisch D, Fischer D (2013) The biopolymer bacterial nanocellulose as drug delivery system: investigation of drug loading and release using the model protein albumin. J Pharm Sci 102:579–592

    Article  CAS  Google Scholar 

  79. Murphy O (2001) Non-polyol low-digestible carbohydrates: food applications and functional benefits. Br J Nutr 85:S47–S53

    CAS  Article  Google Scholar 

  80. Nagel JE, Fuscaldo JT, Fireman P (1977) Paraben allergy. JAMA 237:1594–1595

    CAS  Article  Google Scholar 

  81. Ng C-C, Shyu Y-T (2004) Development and production of cholesterol-lowering Monascus-nata complex. World J Microbiol Biotechnol 20:875–879

    CAS  Article  Google Scholar 

  82. Nguyen LA, He H, Pham-Huy C (2006) Chiral drugs: an overview. Int J Biomed Sci 2:85–100

    CAS  Google Scholar 

  83. Nguyen DN, Ton NMN, Le VVM (2009) Optimization of Saccharomyces cerevisiae immobilization in bacterial cellulose by ‘adsorption-incubation’method. Int Food Res J 16:59–64

    CAS  Google Scholar 

  84. Nimeskern L, Avila HM, Sundberg J, Gatenholm P, Müller R, Stok KS (2013) Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement. J Mech Behav Biomed Mater 22:12–21

    CAS  Article  Google Scholar 

  85. Okiyama A, Motoki M, Yamanaka S (1992) Bacterial cellulose II. Processing of the gelatinous cellulose for food materials. Food Hydrocoll 6:479–487

    CAS  Article  Google Scholar 

  86. Okiyama A, Motoki M, Yamanaka S (1993) Bacterial cellulose IV. Application to processed foods. Food Hydrocoll 6:503–511

    CAS  Article  Google Scholar 

  87. Olyveira GM, Costa LMM, Basmaji P (2013) Physically modified bacterial cellulose as alternative routes for transdermal drug delivery. J Biomater Tissue Eng 3:227–232

    Article  CAS  Google Scholar 

  88. Osma JF, Toca-Herrera JL, Rodríguez-Couto S (2010) Uses of laccases in the food industry. Enzyme Res Article ID 918761. doi:10.4061/2010/918761

  89. Ougiya H, Watanabe K, Morinaga Y, Yoshinaga F (1997) Emulsion-stabilizing effect of bacterial cellulose. Biosci Biotechnol Biochem 61:1541–1545

    CAS  Article  Google Scholar 

  90. Pandey M, Amin MCIM, Ahmad N, Abeer MM (2013) Rapid synthesis of superabsorbent smart-swelling bacterial cellulose/acrylamide-based hydrogels for drug delivery. Int J Polym Sci Article ID 905471. doi:10.1155/2013/905471

  91. Pandey M, Mohamad N, Amin MCIM (2014) Bacterial cellulose/acrylamide pH-sensitive smart hydrogel: development, characterization, and toxicity studies in ICR mice model. Mol Pharm 11:3596–3608

    CAS  Article  Google Scholar 

  92. Park JK, Khan T, Jung JY (2009) Bacterial Cellulose. In: Phillips GO, Williams PA (eds) Handbook of hydrocolloids. Woodhead Publishing Ltd., Abington, pp 724–739

    Chapter  Google Scholar 

  93. Pavaloiu R-D, Stoica-Guzun A, Stroescu M, Jinga SI, Dobre T (2014a) Composite films of poly(vinyl alcohol)–chitosan–bacterial cellulose for drug controlled release. Int J Biol Macromol 68:117–124

    CAS  Article  Google Scholar 

  94. Pavaloiu R-D, Stoica A, Stroescu M, Dobre T (2014b) Controlled release of amoxicillin from bacterial cellulose membranes. Cent Eur J Chem 12:962–967

    CAS  Article  Google Scholar 

  95. Pavaloiu R-D, Stroescu M, Parvulescu O, Dobre T (2014c) Composite hydrogels of bacterial cellulose-carboxymethyl cellulose for drug release. Rev Chim Buchar 65:948–951

    CAS  Google Scholar 

  96. Păvăloiu R-D, Stoica-Guzun A, Dobre T (2015) Swelling studies of composite hydrogels based on bacterial cellulose and gelatin. UPB Sci Bull Ser B 77:54–62

    Google Scholar 

  97. Peng Y-S, Lin S-C, Huang S-J, Wang Y-M, Lin Y-J, Wang L-F, Chen J-S (2006) Chondroitin sulfate-based anti-inflammatory macromolecular prodrugs. Eur J Pharm Sci 29:60–69

    CAS  Article  Google Scholar 

  98. Peppas NA, Wood KM, Blanchette JO (2004) Hydrogels for oral delivery of therapeutic proteins. Expert Opin Biol Ther 4:881–887

    CAS  Article  Google Scholar 

  99. Petersen N, Gatenholm P (2011) Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl Microbiol Biotechnol 91:1277–1286

    CAS  Article  Google Scholar 

  100. Phisalaphong M, Chiaoprakobkij N (2012) Applications and products—nata de coco. In: Gama M, Gatenholm P, Klemm D (eds) Bacterial nanocellulose: a sophisticated multifunctional material. CRC Press, Boca Raton, pp 143–156

    Google Scholar 

  101. Pinto RJ, Daina S, Sadocco P, Pascoal Neto C, Trindade T (2013) Antibacterial activity of nanocomposites of copper and cellulose. Biomed Res Int Article ID 280512. doi:10.1155/2013/280512

  102. Pircher N, Veigel S, Aigner N, Nedelec JM, Rosenau T, Liebnera F (2014) Reinforcement of bacterial cellulose aerogels with biocompatible polymers. Carbohydr Polym 111:505–513

    CAS  Article  Google Scholar 

  103. Prabhu BM, Ali SF, Murdock RC, Hussain SM, Srivatsan M (2010) Copper nanoparticles exert size and concentration dependent toxicity on somatosensory neurons of rat. Nanotoxicology 2010:150–160

    Article  CAS  Google Scholar 

  104. Prausnitz MR, Langer R (2008) Transdermal drug delivery. Nat Biotechnol 26:1261–1268

    CAS  Article  Google Scholar 

  105. Prausnitz MR, Mitragotri S, Langer R (2004) Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov 3:115–124

    CAS  Article  Google Scholar 

  106. Purwadaria T, Gunawan L, Agustin GW (2010) The production of nata colored by Monascus purpureus J1 pigments as functional foods. Microbiol Indones 4:6–10

    Article  Google Scholar 

  107. Qiu K, Netravali AN (2014) A review of fabrication and applications of bacterial cellulose based nanocomposites. Polym Rev 54:598–626

    CAS  Article  Google Scholar 

  108. Radi ZA, Khan NK (2006) Effects of cyclooxygenase inhibition on the gastrointestinal tract. Exp Toxicol Pathol 58:163–173

    CAS  Article  Google Scholar 

  109. Ratner BD, Bryant SJ (2004) Biomaterials: where we have been and where we are going. Annu Rev Biomed Eng 6:41–75

    CAS  Article  Google Scholar 

  110. Ray PC, Yu H, Fu PP (2009) Toxicity and environmental risks of nanomaterials: challenges and future needs. J Environ Sci Health A 27:1–35

    CAS  Article  Google Scholar 

  111. Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55:35–58

    CAS  Google Scholar 

  112. Rouabhia M, Asselin J, Tazi N, Messaddeq Y, Levinson D, Zhang Z (2014) Production of biocompatible and antimicrobial bacterial cellulose polymers functionalized by RGDC grafting groups and gentamicin. ACS Appl Mater Interfaces 6:1439–1446

    CAS  Article  Google Scholar 

  113. Rubinstein MP (2003) Applications of contact lens devices in the management of corneal disease. Eye 17:872–876

    CAS  Article  Google Scholar 

  114. Samberg ME, Oldenburg SJ, Monteiro-Riviere NA (2010) Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro. Environ Health Perspect 118:407–413

    CAS  Article  Google Scholar 

  115. Saxena IM, Brown RM Jr (2012) Biosynthesis of bacterial cellulose. In: Gama M, Gatenholm P, Klemm D (eds) Bacterial nanocellulose: a sophisticated multifunctional material. CRC Press, Boca Raton, pp 1–18

    Google Scholar 

  116. Serafica G, Mormino R, Oster GA, Lentz KE, Koehler KP (2010) Microbial cellulose wound dressing for treating chronic wounds. US patent, US 7704523 B2

  117. Shezad O, Khan S, Khan T, Park JK (2010) Physicochemical and mechanical characterization of bacterial cellulose produced with an excellent productivity in static conditions using a simple fed-batch cultivation strategy. Carbohydr Polym 82:173–180

    CAS  Article  Google Scholar 

  118. Shi Q, Li Y, Sun J, Zhang H, Chen L, Chen B, Yang H, Wang Z (2012) The osteogenesis of bacterial cellulose scaffold loaded with bone morphogenetic protein-2. Biomaterials 33:6644–6649

    CAS  Article  Google Scholar 

  119. Shi X, Zheng Y, Zhang W, Zhang Z, Peng Y (2013) A novel drug carrier based on functional modified nanofiber cellulose and the control release behavior. In: Fourth international conference on smart materials and nanotechnology in engineering. International society for optics and photonics, Gold Coast, Australia, pp 879304–879306

  120. Shi X, Zheng Y, Wang G, Lin Q, Fan J (2014a) pH-and electro-response characteristics of bacterial cellulose nanofiber/sodium alginate hybrid hydrogels for dual controlled drug delivery. RSC Adv 4:47056–47065

    CAS  Article  Google Scholar 

  121. Shi Z, Zhang Y, Phillips GO, Yang G (2014b) Utilization of bacterial cellulose in food. Food Hydrocoll 35:539–545

    CAS  Article  Google Scholar 

  122. Shoichet MS (2009) Polymer scaffolds for biomaterials applications. Macromolecules 43:581–591

    Article  CAS  Google Scholar 

  123. Silva NH, Rodrigues AF, Almeida IF, Costa PC, Rosado C, Neto CP, Silvestre AJ, Freire CS (2014) Bacterial cellulose membranes as transdermal delivery systems for diclofenac: in vitro dissolution and permeation studies. Carbohydr Polym 106:264–269

    CAS  Article  Google Scholar 

  124. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  CAS  Google Scholar 

  125. Steinemann TL, Fletcher M, Bonny AE, Harvey RA, Hamlin D, Zloty P, Besson M, Walter K, Gagnon M (2005) Over-the-counter decorative contact lenses: cosmetic or medical devices? A case series. Eye Contact Lens 31:194–200

    Article  Google Scholar 

  126. Stenstad P, Andresen M, Tanem BS, Stenius P (2008) Chemical surface modifications of microfibrillated cellulose. Cellulose 15:35–45

    CAS  Article  Google Scholar 

  127. Stephens RS, Westland JA, Neogi AN (1990) Method of using bacterial cellulose as a dietary fiber component. US patent, US 4960763 A

  128. Stoica-Guzun A, Stroescu M, Tache F, Zaharescu T, Grosu E (2007) Effect of electron beam irradiation on bacterial cellulose membranes used as transdermal drug delivery systems. Nucl Instrum Methods Phys Res B 265:434–438

    CAS  Article  Google Scholar 

  129. Sulaeva I, Henniges U, Rosenau T, Potthast A (2015) Bacterial cellulose as a material for wound treatment: properties and modifications. A review. Biotechnol Adv 33:1547–1571

    CAS  Article  Google Scholar 

  130. Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan D, Brittberg M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419–431

    CAS  Article  Google Scholar 

  131. Tam TTM, Huong NT (2014) Optimization of Corynebacterium glutamicum immobilization process on bacterial cellulose carrier and its application for lysine fermentation. IOSRJEN 4:33–38

    Google Scholar 

  132. Tang L, Persky AM, Hochhaus G, Meibohm B (2004) Pharmacokinetic aspects of biotechnology products. J Pharm Sci 93:2184–2204

    CAS  Article  Google Scholar 

  133. Tomé LC, Brandão L, Mendes AM, Silvestre AJ, Neto CP, Gandini A, Freire CS, Marrucho IM (2010) Preparation and characterization of bacterial cellulose membranes with tailored surface and barrier properties. Cellulose 17:1203–1211

    Article  CAS  Google Scholar 

  134. Ton N, Le V (2011) Application of immobilized yeast in bacterial cellulose to the repeated batch fermentation in wine-making. Int Food Res J 18:983–987

    CAS  Google Scholar 

  135. Tournilhac F, Lorant R (2003) Composition in the form of an oil-in-water emulsion containing cellulose fibrils, and its uses, especially cosmetic uses. US patent, US 6534071 B1

  136. Trovatti E, Freire CS, Pinto PC, Almeida IF, Costa P, Silvestre AJ, Neto CP, Rosado C (2012) Bacterial cellulose membranes applied in topical and transdermal delivery of lidocaine hydrochloride and ibuprofen: in vitro diffusion studies. Int J Pharm 435:83–87

    CAS  Article  Google Scholar 

  137. Ul-Islam M, Khan T, Khattak WA, Park JK (2013) Bacterial cellulose-MMTs nanoreinforced composite films: novel wound dressing material with antibacterial properties. Cellulose 20:589–596

    CAS  Article  Google Scholar 

  138. Vermonden T, Censi R, Hennink WE (2012) Hydrogels for protein delivery. Chem Rev 112:2853–2888

    CAS  Article  Google Scholar 

  139. Vowden K, Vowden P (2003) Understanding exudate management and the role of exudate in the healing process. Br J Community Nurs 8:S4–S13

    Article  Google Scholar 

  140. Walters RM, Mao G, Gunn ET, Hornby S (2012) Cleansing formulations that respect skin barrier integrity. Dermatol Res Pract Article ID 495917. doi:10.1155/2012/495917

  141. Wan Y, Gao C, Han M, Liang H, Ren K, Wang Y, Luo H (2011) Preparation and characterization of bacterial cellulose/heparin hybrid nanofiber for potential vascular tissue engineering scaffolds. Polym Adv Technol 22:2643–2648

    CAS  Article  Google Scholar 

  142. Wang LP, Wang JY (2014) Skin penetration of inorganic and metallic nanoparticles. J Shanghai Jiaotong Univ (Sci) 19:691–697

    Article  Google Scholar 

  143. Wang W, Li HY, Zhang DW, Jiang J, Cui YR, Qiu S, Zhou YL, Zhang XX (2010) Fabrication of bienzymatic glucose biosensor based on novel gold nanoparticles-bacteria cellulose nanofibers nanocomposite. Electroanalysis 22:2543–2550

    CAS  Article  Google Scholar 

  144. Wang T, Long X, Cheng Y, Liu Z, Yan S (2014) The potential toxicity of copper nanoparticles and copper sulphate on juvenile Epinephelus coioides. Aquat Toxicol 152:96–104

    CAS  Article  Google Scholar 

  145. Wanling Z, Zhe L, Zerui Z, Bihui Z, Shiyan C, Huaping W, Wen Z (2012) Preparation method for anti-virus bacteria cellulose protective. CN patent, 102321261 A

  146. Wei B, Yang G, Hong F (2011) Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohydr Polym 84:533–538

    CAS  Article  Google Scholar 

  147. Wen X, Zheng Y, Wu J, Yue L, Wang C, Luan J, Wu Z, Wang K (2015) In vitro and in vivo investigation of bacterial cellulose dressing containing uniform silver sulfadiazine nanoparticles for burn wound healing. Prog Nat Sci 25:197–203

    Article  Google Scholar 

  148. Wonganu B, Kongruang S. (2010) Red bacterial cellulose production by fermentation of Monascus purpureus. In: Chemistry and chemical engineering (ICCCE), international conference, IEEE, Kyoto, Japan, pp 137–141

  149. Wright JM (2002) The double-edged sword of COX-2 selective NSAIDs. CMAJ 167:1131–1137

    Google Scholar 

  150. Wu S-C, Lia Y-K (2008) Application of bacterial cellulose pellets in enzyme immobilization. J Mol Catal B Enzym 54:103–108

    CAS  Article  Google Scholar 

  151. Wu S-C, Lia Y-K, Ho C-Y (2013) Glucoamylase immobilization on bacterial cellulose using periodate oxidation method. IJSE 3:1–4

    Article  Google Scholar 

  152. Yadav V, Paniliatis BJ, Shi H, Lee K, Cebe P, Kaplan DL (2010) Novel in vivo-degradable cellulose-chitin copolymer from metabolically engineered Gluconacetobacter xylinus. Appl Environ Microbiol 76:6257–6265

    CAS  Article  Google Scholar 

  153. Yang M (2015) Stress and protein instability during formulation and fill/finish processes. BioPharm Int 28:46–49

    Google Scholar 

  154. Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153–155

    CAS  Article  Google Scholar 

  155. Yoshino A, Tabuchi M, Uo M, Tatsumi H, Hideshima K, Kondo S, Sekine J (2013) Applicability of bacterial cellulose as an alternative to paper points in endodontic treatment. Acta Biomater 9:6116–6122

    CAS  Article  Google Scholar 

  156. Zhang T, Wang W, Zhang D, Zhang X, Ma Y, Zhou Y, Qi L (2010) Biotemplated synthesis of gold nanoparticle–bacteria cellulose nanofiber nanocomposites and their application in biosensing. Adv Funct Mater 20:1152–1160

    CAS  Article  Google Scholar 

  157. Zhong CY (2008) Bacterial cellulose gel face mask. CN patent, 200610075040.8

  158. Zimmermann KA, LeBlanc JM, Sheets KT, Fox RW, Gatenholm P (2011) Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications. Mater Sci Eng C 31:43–49

    CAS  Article  Google Scholar 

Download references

Acknowledgments

Hanif Ullah is grateful to Higher Education of Pakistan for fully funded indigenous scholarship (213-62780-2BM2-148) and foreign research sponsorship (IRSIP 30 PS 20) at University of Helsinki, Finland. Dr. H.A. Santos acknowledges financial support from the Academy of Finland (Grants Nos. 252215 and 281300), the University of Helsinki Research Funds, Biocentrum Helsinki, and the European Research Council under the European Union’s Seventh Framework Programme (FP/2007–2013) (Grant No. 310892).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Hélder A. Santos or Taous Khan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ullah, H., Santos, H.A. & Khan, T. Applications of bacterial cellulose in food, cosmetics and drug delivery. Cellulose 23, 2291–2314 (2016). https://doi.org/10.1007/s10570-016-0986-y

Download citation

Keywords

  • Bacterial cellulose
  • Cosmetics
  • Cosmeceuticals
  • Deracemization
  • Drug delivery
  • Food
  • Nutraceuticals
  • Protein delivery
  • Tissue engineering