Skip to main content
Log in

Cellulose–solvent interactions from self-diffusion NMR

  • Note
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Molecular self-diffusion coefficients were measured in solutions of microcrystalline cellulose (MCC) and dissolving pulp, in 40 wt% aqueous tetrabutylammonium hydroxide (TBAH), using pulsed field gradient stimulated echo NMR. From the cellulose diffusion coefficients, a weight averaged radius of hydration <Rh>w = 6.1 nm for MCC and <Rh>w = 15 nm for pulp were obtained. Water and TBA+ ions show a significantly different dependence on the cellulose concentration, revealing different molecular interactions with the polymer. Water-cellulose are essentially excluded volume. TBA+ ions, on the other hand, bind to cellulose with approximately 1.2 TBA+ ions per glucose unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Alves L, Medronho B, Antunes FE, Topgaard D, Lindman B (2016) Dissolution state of cellulose in aqueous systems. 1. Alkaline solvents. Cellulose 23:247–258. doi:10.1007/s10570-015-0809-6. http://link.springer.com/article/10.1007%2Fs10570-015-0809-6

  • Behrens MA, Holdaway JA, Nosrati P, Olsson U (2016) On the dissolution state of cellulose in aqueous tetrabutylammonium hydroxide solutions. RSC Adv 6:30199–30204. doi:10.1039/C6RA03547G

    Article  CAS  Google Scholar 

  • Bolhuis GK, Chowhan ZT (1996) Pharmaceutical powder compaction technology. In: Alderborn G, Nyström C (eds) Materials for direct compaction. Marcel Dekker, New York, pp 419–501

    Google Scholar 

  • De Gennes P-G (1979) Scaling Concepts in polymer physics. Cornell University Press, London

    Google Scholar 

  • Furukawa R, Arauz-Lara JL, Ware BR (1991) Self-diffusion and probe diffusion in dilute and semidilute aqueous solutions of Dextran. Macromolecules 24:599–605. doi:10.1021/ma00002a039

    Article  CAS  Google Scholar 

  • Gustavsson S, Alves L, Lindman B, Topgaard D (2014) Polarization transfer solid-state NMR: a new method for studying cellulose dissolution. RSC Adv 4:31836–31839. doi:10.1039/C4RA04415K

    Article  CAS  Google Scholar 

  • Hall CA, Le KA, Rudaz C, Radhi A, Lovell CS, Damion RA, Budtova T, Ries ME (2012) Macroscopic and microscopic study of 1-Ethyl-3-methyl-imidazolium acetate–water mixtures. J Phys Chem B 116:12810–12818. doi:10.1021/jp306829c

    Article  CAS  Google Scholar 

  • Isogai A (1997) NMR analysis of cellulose dissolved in aqueous NaOH solutions. Cellulose 4:99–107. doi:10.1023/A:1018471419692

    Article  CAS  Google Scholar 

  • Isogai A, Atalla RH (1998) Dissolution of cellulose in aqueous NaOH solutions. Cellulose 5:309–319. doi:10.1023/A:1009272632367

    Article  CAS  Google Scholar 

  • Jönsson B, Wennerström H, Nilsson PG, Linse P (1986) Self-diffusion of small molecules in colloidal systems. Colloid Polym Sci 264:77–88. doi:10.1007/BF01410310

    Article  Google Scholar 

  • Kamide K, Yamazaki H, Okajima K, Hikichi K (1985) Stereoregiilarity of polyacrylonitrile by high resolution 13C NMR analysis. Polym J 17:1233–1239

    Article  CAS  Google Scholar 

  • Kirkwood JG, Riseman J (1948) The Intrinsic viscosities and diffusion constants of flexible macromolecules in solution. J Chem Phys 16:565–573. doi:10.1063/1.1746947

    Article  CAS  Google Scholar 

  • Kumagai T, Ueno N, Koshiyama J (2015) Tokyo Ohka Kogyo Co., Ltd. Patent US20150160560

  • Lindman B, Medronho B (2015) The subtleties of dissolution and regeneration of cellulose: breaking and making hydrogen bonds. BioResources 10:3811–3814

    Article  CAS  Google Scholar 

  • Lindman B, Puyal MC, Kamenka N, Brun B, Gunnarsson G (1982) Micelle formation of ionic surfactants. Tracer self-diffusion studies and theoretical calculations for sodium p-octylbenzenesulfonate. J Phys Chem 86:1702–1711. doi:10.1021/j100206a045

    Article  CAS  Google Scholar 

  • Lindman B, Karlström G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156:76–81. doi:10.1016/j.molliq.2010.04.016

    Article  CAS  Google Scholar 

  • Medronho B, Romano A, Miguel MG, Stigsson L, Lindman L (2012) Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19:581–587. doi:10.1007/s10570-011-9644-6

    Article  CAS  Google Scholar 

  • Nilsson M, Håkansson B, Söderman O, Topgaard D (2007) Influence of polydispersity on the micellization of triblock copolymers investigated by pulsed field gradient nuclear magnetic resonance. Macromolecules 40:8250–8258. doi:10.1021/ma071302p

    Article  CAS  Google Scholar 

  • Nydén M, Söderman O, Karlström G (1999) A PFG NMR self-diffusion investigation of probe diffusion in an Ethyl(hydroxyethyl)cellulose matrix. Macromolecules 32:127–135. doi:10.1021/ma981067y

    Article  Google Scholar 

  • Phillies GDJ (1987) Dynamics of polymers in concentrated solutions: the universal scaling equation derived. Macromolecules 20:558–564. doi:10.1021/ma00169a015

    Article  CAS  Google Scholar 

  • Phillies GDJ (1988) Quantitative prediction of alpha in the scaling law for self-diffusion. Macromolecules 21:3101–3106. doi:10.1021/ma00188a031

    Article  CAS  Google Scholar 

  • Phillies GDJ (2011) Phenomenology of polymer solution dynamics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Radhi A, Le Anh K, Ries ME, Budtova T (2015) Macroscopic and microscopic study of 1-ethyl-3-methyl-imidazolium acetate-DMSO mixtures. J Phys Chem B 119:1633–1640. doi:10.1021/jp5112108

    Article  CAS  Google Scholar 

  • Ries ME, Radhi A, Keating AS, Parker O, Budtova T (2014) Diffusion of 1-Ethyl-3-Methyl-Imidazolium acetate in glucose, cellobiose, and cellulose solutions. Biomacromolecules 15:609–617. doi:10.1021/bm401652c

    Article  CAS  Google Scholar 

  • Saalwächter K, Burchard W, Klüfers P, Kettenbach G, Mayer P, Klemm D, Dugarmaa S (2000) Cellulose solutions in water containing metal complexes. Macromolecules 33:4094–4107. doi:10.1021/ma991893m

    Article  Google Scholar 

  • Sen S, Martin JD, Argyropoulos DS (2013) Review of cellulose non-derivatizing solvent interactions with emphasis on activity in inorganic molten salt hydrates. ACS Sustain Chem Eng 1:858–870. doi:10.1021/sc400085a

    Article  CAS  Google Scholar 

  • Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42:288–292. doi:10.1063/1.1695690

    Article  CAS  Google Scholar 

  • Sung J, Chang T (1993) Temperature dependence of probe diffusion in polymer matrix. Polymer 34:3741–3743. doi:10.1016/0032-3861(93)90064-H

    Article  CAS  Google Scholar 

  • VanderHart DL, Atalla RH (1984) Studies of microstructure in native celluloses using solid-state 13C NMR. Macromolecules 17(1465):1472. doi:10.1021/ma00138a009

    Google Scholar 

  • Wei W, Wei X, Gou G, Jiang M, Xu X, Wang Y, Hui D, Zhou Z (2015) Improved dissolution of cellulose in quaternary ammonium hydroxide by adjusting temperature. RSC Adv 5:39080–39083. doi:10.1039/C5RA04247J

    Article  CAS  Google Scholar 

  • Youngs TGA, Holbrey JD, Mullan CL, Norman SE, Lagunas MC, D’Agostino C, Mantle MD, Gladden LF, Bowron DT, Hardacre C (2011) Neutron diffraction, NMR and molecular dynamics study of glucose dissolved in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Chem Sci 2:1594–1605. doi:10.1039/C1SC00241D

    Article  CAS  Google Scholar 

  • Yuan X, Cheng G (2015) From cellulose fibrils to single chains: understanding cellulose dissolution in ionic liquids. Phys Chem Chem Phys 17:31592–31607. doi:10.1039/c5cp05744b

    Article  CAS  Google Scholar 

  • Zettl U, Hoffmann ST, Koberling F, Krausch G, Enderlein J, Harnau L, Ballauff M (2009) Self-diffusion and cooperative diffusion in semidilute polymer solutions as measured by fluorescence correlation spectroscopy. Macromolecules 42:9537–9547. doi:10.1021/ma901404g

    Article  CAS  Google Scholar 

  • Zhang Y-HP, Cui J, Lynd LR, Kuang RL (2006) Biomacromolecules 7:644–648. doi:10.1021/bm050799c

    Article  CAS  Google Scholar 

  • Zugenmaier P (2001) Conformation and packing of various crystalline cellulose fibers. Prog Polym Sci 26:1341–1417. doi:10.1016/S0079-6700(01)00019-3

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Pegah Nosrati Hefzabad for MCC/TBAH solutions preparation. We thank Caroline Löfgren, Södra, for providing the cellulose size distributions using SEC-MALS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luigi Gentile or Ulf Olsson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gentile, L., Olsson, U. Cellulose–solvent interactions from self-diffusion NMR. Cellulose 23, 2753–2758 (2016). https://doi.org/10.1007/s10570-016-0984-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-0984-0

Keywords

Navigation