Abstract
Molecular self-diffusion coefficients were measured in solutions of microcrystalline cellulose (MCC) and dissolving pulp, in 40 wt% aqueous tetrabutylammonium hydroxide (TBAH), using pulsed field gradient stimulated echo NMR. From the cellulose diffusion coefficients, a weight averaged radius of hydration <Rh>w = 6.1 nm for MCC and <Rh>w = 15 nm for pulp were obtained. Water and TBA+ ions show a significantly different dependence on the cellulose concentration, revealing different molecular interactions with the polymer. Water-cellulose are essentially excluded volume. TBA+ ions, on the other hand, bind to cellulose with approximately 1.2 TBA+ ions per glucose unit.
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Alves L, Medronho B, Antunes FE, Topgaard D, Lindman B (2016) Dissolution state of cellulose in aqueous systems. 1. Alkaline solvents. Cellulose 23:247–258. doi:10.1007/s10570-015-0809-6. http://link.springer.com/article/10.1007%2Fs10570-015-0809-6
Behrens MA, Holdaway JA, Nosrati P, Olsson U (2016) On the dissolution state of cellulose in aqueous tetrabutylammonium hydroxide solutions. RSC Adv 6:30199–30204. doi:10.1039/C6RA03547G
Bolhuis GK, Chowhan ZT (1996) Pharmaceutical powder compaction technology. In: Alderborn G, Nyström C (eds) Materials for direct compaction. Marcel Dekker, New York, pp 419–501
De Gennes P-G (1979) Scaling Concepts in polymer physics. Cornell University Press, London
Furukawa R, Arauz-Lara JL, Ware BR (1991) Self-diffusion and probe diffusion in dilute and semidilute aqueous solutions of Dextran. Macromolecules 24:599–605. doi:10.1021/ma00002a039
Gustavsson S, Alves L, Lindman B, Topgaard D (2014) Polarization transfer solid-state NMR: a new method for studying cellulose dissolution. RSC Adv 4:31836–31839. doi:10.1039/C4RA04415K
Hall CA, Le KA, Rudaz C, Radhi A, Lovell CS, Damion RA, Budtova T, Ries ME (2012) Macroscopic and microscopic study of 1-Ethyl-3-methyl-imidazolium acetate–water mixtures. J Phys Chem B 116:12810–12818. doi:10.1021/jp306829c
Isogai A (1997) NMR analysis of cellulose dissolved in aqueous NaOH solutions. Cellulose 4:99–107. doi:10.1023/A:1018471419692
Isogai A, Atalla RH (1998) Dissolution of cellulose in aqueous NaOH solutions. Cellulose 5:309–319. doi:10.1023/A:1009272632367
Jönsson B, Wennerström H, Nilsson PG, Linse P (1986) Self-diffusion of small molecules in colloidal systems. Colloid Polym Sci 264:77–88. doi:10.1007/BF01410310
Kamide K, Yamazaki H, Okajima K, Hikichi K (1985) Stereoregiilarity of polyacrylonitrile by high resolution 13C NMR analysis. Polym J 17:1233–1239
Kirkwood JG, Riseman J (1948) The Intrinsic viscosities and diffusion constants of flexible macromolecules in solution. J Chem Phys 16:565–573. doi:10.1063/1.1746947
Kumagai T, Ueno N, Koshiyama J (2015) Tokyo Ohka Kogyo Co., Ltd. Patent US20150160560
Lindman B, Medronho B (2015) The subtleties of dissolution and regeneration of cellulose: breaking and making hydrogen bonds. BioResources 10:3811–3814
Lindman B, Puyal MC, Kamenka N, Brun B, Gunnarsson G (1982) Micelle formation of ionic surfactants. Tracer self-diffusion studies and theoretical calculations for sodium p-octylbenzenesulfonate. J Phys Chem 86:1702–1711. doi:10.1021/j100206a045
Lindman B, Karlström G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156:76–81. doi:10.1016/j.molliq.2010.04.016
Medronho B, Romano A, Miguel MG, Stigsson L, Lindman L (2012) Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19:581–587. doi:10.1007/s10570-011-9644-6
Nilsson M, Håkansson B, Söderman O, Topgaard D (2007) Influence of polydispersity on the micellization of triblock copolymers investigated by pulsed field gradient nuclear magnetic resonance. Macromolecules 40:8250–8258. doi:10.1021/ma071302p
Nydén M, Söderman O, Karlström G (1999) A PFG NMR self-diffusion investigation of probe diffusion in an Ethyl(hydroxyethyl)cellulose matrix. Macromolecules 32:127–135. doi:10.1021/ma981067y
Phillies GDJ (1987) Dynamics of polymers in concentrated solutions: the universal scaling equation derived. Macromolecules 20:558–564. doi:10.1021/ma00169a015
Phillies GDJ (1988) Quantitative prediction of alpha in the scaling law for self-diffusion. Macromolecules 21:3101–3106. doi:10.1021/ma00188a031
Phillies GDJ (2011) Phenomenology of polymer solution dynamics. Cambridge University Press, Cambridge
Radhi A, Le Anh K, Ries ME, Budtova T (2015) Macroscopic and microscopic study of 1-ethyl-3-methyl-imidazolium acetate-DMSO mixtures. J Phys Chem B 119:1633–1640. doi:10.1021/jp5112108
Ries ME, Radhi A, Keating AS, Parker O, Budtova T (2014) Diffusion of 1-Ethyl-3-Methyl-Imidazolium acetate in glucose, cellobiose, and cellulose solutions. Biomacromolecules 15:609–617. doi:10.1021/bm401652c
Saalwächter K, Burchard W, Klüfers P, Kettenbach G, Mayer P, Klemm D, Dugarmaa S (2000) Cellulose solutions in water containing metal complexes. Macromolecules 33:4094–4107. doi:10.1021/ma991893m
Sen S, Martin JD, Argyropoulos DS (2013) Review of cellulose non-derivatizing solvent interactions with emphasis on activity in inorganic molten salt hydrates. ACS Sustain Chem Eng 1:858–870. doi:10.1021/sc400085a
Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42:288–292. doi:10.1063/1.1695690
Sung J, Chang T (1993) Temperature dependence of probe diffusion in polymer matrix. Polymer 34:3741–3743. doi:10.1016/0032-3861(93)90064-H
VanderHart DL, Atalla RH (1984) Studies of microstructure in native celluloses using solid-state 13C NMR. Macromolecules 17(1465):1472. doi:10.1021/ma00138a009
Wei W, Wei X, Gou G, Jiang M, Xu X, Wang Y, Hui D, Zhou Z (2015) Improved dissolution of cellulose in quaternary ammonium hydroxide by adjusting temperature. RSC Adv 5:39080–39083. doi:10.1039/C5RA04247J
Youngs TGA, Holbrey JD, Mullan CL, Norman SE, Lagunas MC, D’Agostino C, Mantle MD, Gladden LF, Bowron DT, Hardacre C (2011) Neutron diffraction, NMR and molecular dynamics study of glucose dissolved in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Chem Sci 2:1594–1605. doi:10.1039/C1SC00241D
Yuan X, Cheng G (2015) From cellulose fibrils to single chains: understanding cellulose dissolution in ionic liquids. Phys Chem Chem Phys 17:31592–31607. doi:10.1039/c5cp05744b
Zettl U, Hoffmann ST, Koberling F, Krausch G, Enderlein J, Harnau L, Ballauff M (2009) Self-diffusion and cooperative diffusion in semidilute polymer solutions as measured by fluorescence correlation spectroscopy. Macromolecules 42:9537–9547. doi:10.1021/ma901404g
Zhang Y-HP, Cui J, Lynd LR, Kuang RL (2006) Biomacromolecules 7:644–648. doi:10.1021/bm050799c
Zugenmaier P (2001) Conformation and packing of various crystalline cellulose fibers. Prog Polym Sci 26:1341–1417. doi:10.1016/S0079-6700(01)00019-3
Acknowledgments
Pegah Nosrati Hefzabad for MCC/TBAH solutions preparation. We thank Caroline Löfgren, Södra, for providing the cellulose size distributions using SEC-MALS.
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Gentile, L., Olsson, U. Cellulose–solvent interactions from self-diffusion NMR. Cellulose 23, 2753–2758 (2016). https://doi.org/10.1007/s10570-016-0984-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10570-016-0984-0