Skip to main content

Application of chitosan and its derivatives for solid-phase extraction of metal and metalloid ions: a mini-review

Abstract

Here we review chitosan-based materials for solid-phase extraction of metal and metalloid ions prior to their determination by atomic absorption spectrometry, inductively coupled plasma atomic emission spectrometry, mass spectrometry, and some other spectrometric techniques. We show that nearly zero affinity of chitosan and its derivatives to alkali and alkali-earth metal ions is very beneficial for separation of analytes from the salt matrix, which is always present in natural waters, waste streams, and geological samples and interferes with analytical signals. Applicability of chitosan to selective recovery of different metal and metalloid ions can be significantly improved via functionalization with N-, S-, and O-containing groups imparting chitosan with additional electron donor atoms and capability to form stable five- and six-membered chelate rings with metal ions. Among most promising materials for analytical preconcentration, we discussed chitosan-based composites; carboxyalkyl chitosans; chitosan derivatives containing residues of aminoacids, iminodiacetic acid, ethylenediaminetetraacetic and diethylenetriaminepentaacetic acids; chitosans modified with aliphatic and aromatic amines, heterocyclic fragments (pyridyl, imidazole), and crown ethers. We have shown that most chitosan derivatives provide only group selectivity toward metal ions; however, optimization of recovery conditions allows metals and metalloids speciation and efficient separation of noble and transition metal ions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Arrascue ML, Garcia HM, Horna O, Guibal E (2003) Gold sorption on chitosan derivatives. Hydrometallurgy 71:191–200. doi:10.1016/S0304-386X(03)00156-7

    CAS  Article  Google Scholar 

  • Azarova YA, Pestov AV, Ustinov AY, Bratskaya SY (2015) Application of chitosan and its N-heterocyclic derivatives for preconcentration of noble metal ions and their determination using atomic absorption spectrometry. Carbohydr Polym 134:680–686. doi:10.1016/j.carbpol.2015.07.086

    CAS  Article  Google Scholar 

  • Baba Y, Masaaki K, Kawano Y (1994) Selective adsorption of copper(II) over iron(III) on chitosan derivative introducing pyridyl group. Chem Lett 23:2389–2392

    Article  Google Scholar 

  • Baba Y, Kawano Y, Hirakawa H (1996) Highly selective adsorption resins. 1. Preparation of chitosan derivatives containing 2-pyridylmethyl, 2-thienylmethyl, and 3-(methylthio)propyl groups and their selective adsorption of precious metal. Bull Chem Soc Jpn 69:1255–1260

    CAS  Article  Google Scholar 

  • Baba Y, Masaaki K, Kawano Y (1998) Synthesis of a chitosan derivative recognizing planar metal ion and its selective adsorption equilibria of copper (I) over iron (III) 1. React Funct Polym 36:167–172

    CAS  Article  Google Scholar 

  • Baba Y, Noma H, Nakayama R, Matsushita Y (2002) Preparation of chitosan derivatives containing methylthiocarbamoyl and phenylthiocarbamoyl groups and their selective adsorption of copper (II) and iron (III). Anal Sci 18:359–361

    CAS  Article  Google Scholar 

  • Bratskaya SY, Ustinov AY, Azarova YA, Pestov AV (2011) Thiocarbamoyl chitosan: synthesis, characterization and sorption of Au(III), Pt(IV), and Pd(II). Carbohydr Polym 85:854–861. doi:10.1016/j.carbpol.2011.04.008

    CAS  Article  Google Scholar 

  • Bratskaya SY, Azarova YA, Matochkina EG et al (2012) N-(2-(2-pyridyl)ethyl)chitosan: synthesis, characterization and sorption properties. Carbohydr Polym 87:869–875. doi:10.1016/j.carbpol.2011.08.081

    CAS  Article  Google Scholar 

  • Butewicz A, Gavilan KC, Pestov AV et al (2010) Palladium and platinum sorption on a thiocarbamoyl-derivative of chitosan. J Appl Polym Sci 116:3318–3330. doi:10.1002/app

    CAS  Google Scholar 

  • Cárdenas G, Orlando P, Edelio T (2001) Synthesis and applications of chitosan mercaptanes as heavy metal retention agent. Int J Biol Macromol 28:167–174

    Article  Google Scholar 

  • Carletto JS, Pietro Roux KCD, Maltez HF et al (2008) Use of 8-hydroxyquinoline-chitosan chelating resin in an automated on-line preconcentration system for determination of zinc(II) by F AAS. J Hazard Mater 157:88–93. doi:10.1016/j.jhazmat.2007.12.083

    CAS  Article  Google Scholar 

  • Chang Q, Zhang M, Wang J (2009) Removal of Cu2+ and turbidity from wastewater by mercaptoacetyl chitosan. J Hazard Mater 169:621–625. doi:10.1016/j.jhazmat.2009.03.144

    CAS  Article  Google Scholar 

  • Chassary P, Vincent T, Sanchez Marcano J et al (2005) Palladium and platinum recovery from bicomponent mixtures using chitosan derivatives. Hydrometallurgy 76:131–147. doi:10.1016/j.hydromet.2004.10.004

    CAS  Article  Google Scholar 

  • Cui C, He M, Chen B, Hu B (2014) Chitosan modified magnetic nanoparticles based solid phase extraction combined with ICP-OES for the speciation of Cr(III) and Cr(VI). Anal Methods 6:8577–8583. doi:10.1039/C4AY01609B

    CAS  Article  Google Scholar 

  • Dai J, Ren FL, Tao CY, Bai Y (2011) Synthesis of cross-linked chitosan and application to adsorption and speciation of Se (VI) and Se (IV) in environmental water samples by inductively coupled plasma optical emission spectrometry. Int J Mol Sci 12:4009–4020. doi:10.3390/ijms12064009

    CAS  Article  Google Scholar 

  • Dai B, Cao M, Fang G et al (2012) Schiff base-chitosan grafted multiwalled carbon nanotubes as a novel solid-phase extraction adsorbent for determination of heavy metal by ICP-MS. J Hazard Mater 219–220:103–110. doi:10.1016/j.jhazmat.2012.03.065

    Article  Google Scholar 

  • Dhakal RP, Oshima T, Baba Y (2008) Planarity-recognition enhancement of N-(2-pyridylmethyl)chitosan by imprinting planar metal ions. React Funct Polym 68:1549–1556. doi:10.1016/j.reactfunctpolym.2008.08.008

    CAS  Article  Google Scholar 

  • Ding S, Zhang X, Feng X, Wang Y, Ma S, Peng Q, Zhang W (2006) Synthesis of N, N’-diallyldibenzo 18-crown-6 crown ether crosslinked chitosan and their adsorption properties for metal ions. React Funct Polym 66:357–363

    CAS  Article  Google Scholar 

  • Ding P, Huang KL, Li GY, Zeng WW (2007) Mechanisms and kinetics of chelating reaction between novel chitosan derivatives and Zn(II). J Hazard Mater 146:58–64. doi:10.1016/j.jhazmat.2006.11.061

    CAS  Article  Google Scholar 

  • Donia AM, Atia AA, Elwakeel KZ (2007) Recovery of gold(III) and silver(I) on a chemically modified chitosan with magnetic properties. Hydrometallurgy 87:197–206. doi:10.1016/j.hydromet.2007.03.007

    CAS  Article  Google Scholar 

  • El-Sherbiny IM (2009) Synthesis, characterization and metal uptake capacity of a new carboxymethyl chitosan derivative. Eur Polym J 45:199–210. doi:10.1016/j.eurpolymj.2008.10.042

    CAS  Article  Google Scholar 

  • Emara AAA, Tawab MA, El-ghamry MA, Elsabee MZ (2011) Metal uptake by chitosan derivatives and structure studies of the polymer metal complexes. Carbohydr Polym 83:192–202. doi:10.1016/j.carbpol.2010.07.040

    CAS  Article  Google Scholar 

  • Fan L, Luo C, Lv Z et al (2011) Removal of Ag+ from water environment using a novel magnetic thiourea-chitosan imprinted Ag+. J Hazard Mater 194:193–201. doi:10.1016/j.jhazmat.2011.07.080

    CAS  Article  Google Scholar 

  • Fu X, Liu H, Liu Y, Liu Y (2013) Application of chitosan and its derivatives in analytical chemistry: a mini-review. J Carbohydr Chem 32:463–474. doi:10.1080/07328303.2013.863318

    CAS  Article  Google Scholar 

  • Gao Y, Lee K-H, Oshima M, Motomizu S (2000) Adsorption behavior of metal ions on cross-linked chitosan and the determination of oxoanions after pretreatment with a chitosan column. Anal Sci 16:1303–1308. doi:10.2116/analsci.16.1303

    CAS  Article  Google Scholar 

  • Gao Y, Oshita K, Lee K-H et al (2002) Development of column-pretreatment chelating resins for matrix elimination/multi-element determination by inductively coupled plasma-mass spectrometry. Analyst 127:1713–1719. doi:10.1039/b208341h

    CAS  Article  Google Scholar 

  • Gavilan KC, Pestov AV, Garcia HM et al (2009) Mercury sorption on a thiocarbamoyl derivative of chitosan. J Hazard Mater 165:415–426. doi:10.1016/j.jhazmat.2008.10.005

    CAS  Article  Google Scholar 

  • Ge H, Huang S (2010) Microwave preparation and adsorption properties of EDTA-modified cross-linked chitosan. J Appl Polym Sci 115:514–519. doi:10.1002/app

    CAS  Article  Google Scholar 

  • Guibal E (2004) Interactions of metal ions with chitosan-based sorbents: a review. Sep Purif Technol 38:43–74. doi:10.1016/j.seppur.2003.10.004

    CAS  Article  Google Scholar 

  • Guibal E, Vincent T, Mendoza RN (2000) Synthesis and characterization of a thiourea derivative of chitosan for platinum recovery. J Appl Polym Sci 75:119–134

    Article  Google Scholar 

  • Guibal E, Von Offenberg Sweeney N, Vincent T, Tobin JM (2002) Sulfur derivatives of chitosan for palladium sorption. React Funct Polym 50:149–163

    CAS  Article  Google Scholar 

  • Hakim L, Sabarudin A, Oshima M, Motomizu S (2007) Synthesis of novel chitosan resin derivatized with serine diacetic acid moiety and its application to on-line collection/concentration of trace elements and their determination using inductively coupled plasma-atomic emission spectrometry. Anal Chim Acta 588:73–81. doi:10.1016/j.aca.2007.01.066

    CAS  Article  Google Scholar 

  • Hakim L, Sabarudin A, Oshita K et al (2008) Synthesis of cross-linked chitosan functionalized with threonine moiety and its application to on-line collection/concentration and determination of Mo, V and Cu. Talanta 74:977–985. doi:10.1016/j.talanta.2007.08.012

    CAS  Article  Google Scholar 

  • He J-C, Zhou F-Q, Mao Y-F et al (2013) Preconcentration of trace cadmium (II) and copper (II) in environmental water using a column packed with modified silica gel-chitosan prior to flame atomic absorption spectrometry determination. Anal Lett 46:1430–1441. doi:10.1080/00032719.2013.764533

    CAS  Article  Google Scholar 

  • Hosoba M, Oshita K, Katarina RK et al (2009) Synthesis of novel chitosan resin possessing histidine moiety and its application to the determination of trace silver by ICP-AES coupled with triplet automated-pretreatment system. Anal Chim Acta 639:51–56. doi:10.1016/j.aca.2009.02.050

    CAS  Article  Google Scholar 

  • Hu D, Cui Y, Dong X, Fang Y (2001) Studies on CoSalen immobilized onto N- (4-pyridylmethylidene)–chitosan. React Funct Polym 48:201–207

    CAS  Article  Google Scholar 

  • Hu D, Fang Y, Gao G, Wang M (2006) Studies on CoSalen immobilized onto N-(4-methylimidazole)-chitosan. J Appl Polym Sci 101:2431–2436. doi:10.1002/app.24019

    CAS  Article  Google Scholar 

  • Humeres E, De Souza EP, Debacher NA, Aliev AE (2002) Synthesis and coordinating ability of chitosan dithiocarbamate and analogs towards Cu(II) ions. J Phys Org Chem 15:852–857. doi:10.1002/poc.559

    CAS  Article  Google Scholar 

  • Inoue K, Yoshizuka K, Ohto K (1999) Adsorptive separation of some metal ions by complexing agent types of chemically modified chitosan. Anal Chim Acta 388:209–218

    CAS  Article  Google Scholar 

  • Julkapli NM, Ahmad Z, Akil HM (2010) Preparation and characterization of 1,2,4,5-benzenetetra carboxylic-chitosan. e-Polymers 10:841–857

    Google Scholar 

  • Kannamba B, Reddy KL, AppaRao BV (2010) Removal of Cu(II) from aqueous solutions using chemically modified chitosan. J Hazard Mater 175:939–948. doi:10.1016/j.jhazmat.2009.10.098

    CAS  Article  Google Scholar 

  • Katarina RK, Takayanagi T, Oshima M, Motomizu S (2006) Synthesis of a chitosan-based chelating resin and its application to the selective concentration and ultratrace determination of silver in environmental water samples. Anal Chim Acta 558:246–253. doi:10.1016/j.aca.2005.11.010

    CAS  Article  Google Scholar 

  • Katarina RK, Oshima M, Motomizu S (2009) High-capacity chitosan-based chelating resin for on-line collection of transition and rare-earth metals prior to inductively coupled plasma-atomic emission spectrometry measurement. Talanta 79:1252–1259. doi:10.1016/j.talanta.2009.05.030

    CAS  Article  Google Scholar 

  • Kawamura Y, Mitsuhashi M, Tanibe H, Yoshida H (1993) Adsorption of Metal Ions on Polyaminated Highly Porous Chitosan Chelating Resin. Ind Eng Chem Res 32:386–391

    CAS  Article  Google Scholar 

  • Khan A, Badshah S, Airoldi C (2011) Dithiocarbamated chitosan as a potent biopolymer for toxic cation remediation. Colloids Surf B Biointerfaces 87:88–95. doi:10.1016/j.colsurfb.2011.05.006

    CAS  Article  Google Scholar 

  • Kumagai H, Inoue Y, Yokoyama T et al (1998) Chromatographic selectivity of rare earth elements on iminodiacetate-type chelating resins having spacer arms of different lengths: importance of steric flexibility of functional group in a polymer chelating resin. Anal Chem 70:4070–4073. doi:10.1021/ac980334v

    CAS  Article  Google Scholar 

  • Lee K, Oshima M, Takayanagi T, Motomizu S (2000) Simultaneous determination of trace elements in river-water samples by ICP-MS in combination with a discrete microsampling technique after enrichment with a chitosan-based chelating resin. Anal Sci 16:731–738

    CAS  Article  Google Scholar 

  • Leonhardt SES, Stolle A, Ondruschka B et al (2010) Chitosan as a support for heterogeneous Pd catalysts in liquid phase catalysis. Appl Catal A Gen 379:30–37. doi:10.1016/j.apcata.2010.02.029

    CAS  Article  Google Scholar 

  • Li F, Bao C, Zhang J et al (2010) Sorption technique for the determination of trace palladium in geological samples using atomic absorption spectrometry. Anal Lett 43:1857–1868. doi:10.1080/00032710903502165

    CAS  Article  Google Scholar 

  • Lü H, An H, Wang X, Xie Z (2013) Preparation of carboxymethyl chitosan-graft-β-cyclodextrin modified silica gel and preconcentration of cadmium. Int J Biol Macromol 61:359–362. doi:10.1016/j.ijbiomac.2013.07.023

    Article  Google Scholar 

  • Minamisawa H, Arai N, Okutani T (1999) Electrothermal atomic absorption spectrometric determination of copper (II) using a tungsten metal furnace after preconcentration onto chitosan. Anal Sci 15:269–275

    CAS  Article  Google Scholar 

  • Minamisawa H, Minamisawa M, Ando M et al (2006) Preconcentration of trace amounts of Cu(II) into the liquid—liquid interface with chitosan and its determination by graphite furnace atomic absorption spectrometry. Bunseki Kagaku 55:573–578

    CAS  Article  Google Scholar 

  • Mladenova E, Karadjova I, Tsalev DL (2012) Solid-phase extraction in the determination of gold, palladium, and platinum. J Sep Sci 35:1249–1265. doi:10.1002/jssc.201100885

    CAS  Article  Google Scholar 

  • Moghimi A (2014) Separation and extraction of Co(II) using magnetic chitosan nanoparticles grafted with β-cyclodextrin and determination by FAAS. Russ J Phys Chem A 88:2157–2164. doi:10.1134/S0036024414120024

    CAS  Article  Google Scholar 

  • Muzzarelli RAA, Mattioli-Belmonte M, Tietz C et al (1994) Stimulatory effect on bone formation exerted by a modified chitosan. Biomaterials 15:1075–1081

    CAS  Article  Google Scholar 

  • Ninomiya T, Oshita K, Oshima M, Motomizu S (2003) Synthesis of dithiocarbamate-chitosan resin and its adsorption behavior for trace metals. Bunseki Kagaku 52:811–817

    Article  Google Scholar 

  • Oshita K (2004) Synthesis of novel solid materials for the separation of metals by derivatizing biomass with functional moieties and their application to analytical chemistry. Bunseki Kagaku 53:187–188

    CAS  Google Scholar 

  • Oshita K, Motomizu S (2008) Development of chelating resins and their ability of collection and separation for metal ions. Bunseki Kagaku 57:291–311. doi:10.2116/bunsekikagaku.57.291

    CAS  Article  Google Scholar 

  • Oshita K, Seo K, Sabarudin A et al (2008) Synthesis of chitosan resin possessing a phenylarsonic acid moiety for collection/concentration of uranium and its determination by ICP-AES. Anal Bioanal Chem 390:1927–1932. doi:10.1007/s00216-008-1931-1

    CAS  Article  Google Scholar 

  • Owawa H, Shimiza T, Uehara N (2007) Preconcentration of heavy metal ions with thermo-sensitive chitosan and atomic absorption spectrometric determination of trace cadmium in water. Bunseki Kagaku 56:721–728

    Article  Google Scholar 

  • Park S-I, Kwak IS, Won SW, Yun Y-S (2013) Glutaraldehyde-crosslinked chitosan beads for sorptive separation of Au(III) and Pd(II): opening a way to design reduction-coupled selectivity-tunable sorbents for separation of precious metals. J Hazard Mater 248–249:211–218. doi:10.1016/j.jhazmat.2013.01.013

    Article  Google Scholar 

  • Pestov A, Bratskaya S (2016) Chitosan and its derivatives as highly efficient polymer ligands. Molecules. doi:10.3390/molecules21030330

    Google Scholar 

  • Pestov AV, Koryakova OV, Leonidov II, Yatluk YG (2010) Gel-synthesis, structure, and properties of sulfur-containing chitosan derivatives. Russ J Appl Chem 83:787–794. doi:10.1134/S1070427210050058

    CAS  Article  Google Scholar 

  • Pestov AV, Bratskaya SY, Azarova YA, Yatluk YG (2012) Imidazole-containing chitosan derivative: a new synthetic approach and sorption properties. Russ Chem Bull 61:1959–1964

    CAS  Article  Google Scholar 

  • Repo E, Warchol JK, Kurniawan TA, Sillanpää MET (2010) Adsorption of Co(II) and Ni(II) by EDTA- and/or DTPA-modified chitosan: kinetic and equilibrium modeling. Chem Eng J 161:73–82. doi:10.1016/j.cej.2010.04.030

    CAS  Article  Google Scholar 

  • Rodrigues CA, Laranjeira MCM, Stadler E, Drago V (2000) Preparation and characterization of the pentacyanoferrate (II) on the surface of N-(4-pyridilmethylidene) chitosan. Carbohydr Polym 42:311–314

    CAS  Article  Google Scholar 

  • Sabarudin A, Oshita K, Oshima M, Motomizu S (2005a) Synthesis of chitosan resin possessing 3,4-diamino benzoic acid moiety for the collection/concentration of arsenic and selenium in water samples and their measurement by inductively coupled plasma-mass spectrometry. Anal Chim Acta 542:207–215. doi:10.1016/j.aca.2005.03.070

    CAS  Article  Google Scholar 

  • Sabarudin A, Oshita K, Oshima M, Motomizu S (2005b) Synthesis of cross-linked chitosan possessing N-methyl-d-glucamine moiety (CCTS-NMDG) for adsorption/concentration of boron in water samples and its accurate measurement by ICP-MS and ICP-AES. Talanta 66:136–144. doi:10.1016/j.talanta.2004.10.011

    CAS  Article  Google Scholar 

  • Sabarudin A, Oshima M, Noguchi O, Motomizu S (2007a) Functionalization of chitosan with 3-nitro-4-amino benzoic acid moiety and its application to the collection/concentration of molybdenum in environmental water samples. Talanta 73:831–837

    CAS  Article  Google Scholar 

  • Sabarudin A, Oshima M, Takayanagi T et al (2007b) Functionalization of chitosan with 3,4-dihydroxybenzoic acid for the adsorption/collection of uranium in water samples and its determination by inductively coupled plasma-mass spectrometry. Anal Chim Acta 581:214–220. doi:10.1016/j.aca.2006.08.024

    CAS  Article  Google Scholar 

  • Sabarudin A, Umemura T, Motomizu S (2011) Chitosan functionalized with di-2-propanolamine: its application as solid phase extractant for the determination of germanium in water samples by ICP-MS. Microchem J 99:34–39. doi:10.1016/j.microc.2011.03.004

    CAS  Article  Google Scholar 

  • Shinde RN, Pandey AK, Acharya R et al (2013) Chitosan-transition metal ions complexes for selective arsenic(V) preconcentration. Water Res 47:3497–3506. doi:10.1016/j.watres.2013.03.059

    CAS  Article  Google Scholar 

  • Skorik YA, Gomes CAR, Podberezskaya NV et al (2005) Complexation models of N- (2-carboxyethyl) chitosans with copper(II) ions. Biomacromolecules 6:189–195

    CAS  Article  Google Scholar 

  • Smith RM, Martell AE (1989) Critical stability constants, vol 6. Springer, US

  • Sokovnin SYu, Balezin ME, Puzyrev IS, Pestov AV, Yatluk YuG (2009) Sorbents based on N-(-2-carboxyethyl) chitosan cross-linked by nanosecond electron beams. Russ Chem Bull Int Ed 58:1172–1179

    CAS  Article  Google Scholar 

  • Sun S, Wang A (2006a) Adsorption kinetics of Cu(II) ions using N, O-carboxymethyl-chitosan. J Hazard Mater B 131:103–111. doi:10.1016/j.jhazmat.2005.09.012

    CAS  Article  Google Scholar 

  • Sun S, Wang A (2006b) Adsorption properties and mechanism of cross-linked carboxymethyl-chitosan resin with Zn(II) as template ion. React Funct Polym 66:819–826. doi:10.1016/j.reactfunctpolym.2005.11.008

    CAS  Article  Google Scholar 

  • Sun S, Wang A (2006c) Adsorption properties of N-succinyl-chitosan and cross-linked N-succinyl-chitosan resin with Pb(II) as template ions. Sep Purif Technol 51:409–415. doi:10.1016/j.seppur.2006.03.004

    CAS  Article  Google Scholar 

  • Sun JM, Xu P, Sun HW (2004) Determination of Cu(II), Zn(II), Co(II), Ni(II), Pb(II) and Cd(II) by chitosan separation-flame atomic absorption spectrometry. Chin J Anal Chem 32:1356–1358

    CAS  Google Scholar 

  • Suneetha Y, Kumar BN, Harinath Y et al (2012) Functionalization of cross linked chitosan with 2-aminopyridine-3-carboxylic acid for solid phase extraction of cadmium and zinc ions and their determination by atomic absorption spectrometry. Microchim Acta 176:169–176. doi:10.1007/s00604-011-0707-z

    CAS  Article  Google Scholar 

  • Tong J, Li Z, Xia C (2005) Highly efficient catalysts of chitosan-Schiff base Co(II) and Pd(II) complexes for aerobic oxidation of cyclohexane in the absence of reductants and solvents. J Mol Catal A Chem 231:197–203. doi:10.1016/j.molcata.2005.01.011

    CAS  Article  Google Scholar 

  • Wan Ibrahim WA, Abd Ali LI, Sulaiman A et al (2014) Application of solid-phase extraction for trace elements in environmental and biological samples: a review. Crit Rev Anal Chem 44:233–254. doi:10.1080/10408347.2013.855607

    CAS  Article  Google Scholar 

  • Wan L, Wang Y, Qian S (2002) Study on the adsorption properties of novel crown ether crosslinked chitosan for metal ions. J Appl Polym Sci 84:29–34. doi:10.1002/app.10180

    CAS  Article  Google Scholar 

  • Wang M, Xu L, Peng J et al (2009) Adsorption and desorption of Sr(II) ions in the gels based on polysaccharide derivates. J Hazard Mater 171:820–826. doi:10.1016/j.jhazmat.2009.06.071

    CAS  Article  Google Scholar 

  • Wang H, Bao C, Li F et al (2010a) Preparation and application of 4-amino-4′-nitro azobenzene modified chitosan as a selective adsorbent for the determination of Au(III) and Pd(II). Microchim Acta 168:99–105. doi:10.1007/s00604-009-0265-9

    CAS  Article  Google Scholar 

  • Wang L, Xing R, Liu S et al (2010b) Recovery of silver (I) using a thiourea-modified chitosan resin. J Hazard Mater 180:577–582. doi:10.1016/j.jhazmat.2010.04.072

    CAS  Article  Google Scholar 

  • Wang H, Li C, Bao C et al (2011) Adsorption and determination of Pd(II) and Pt(IV) onto 3′-Nitro-4-amino azobenzene modified chitosan. J Chem Eng Data 56:4203–4207

    CAS  Article  Google Scholar 

  • Wu Y, Jiang Y, Han D et al (2007) Speciation of chromium in water using crosslinked chitosan-bound FeC nanoparticles as solid-phase extractant, and determination by flame atomic absorption spectrometry. Microchim Acta 159:333–339. doi:10.1007/s00604-007-0772-5

    CAS  Article  Google Scholar 

  • Xiong C, Pi L, Chen X et al (2013) Adsorption behavior of Hg2+ in aqueous solutions on a novel chelating cross-linked chitosan microsphere. Carbohydr Polym 98:1222–1228. doi:10.1016/j.carbpol.2013.07.034

    CAS  Article  Google Scholar 

  • Yan H, Dai J, Yang Z et al (2011) Enhanced and selective adsorption of copper(II) ions on surface carboxymethylated chitosan hydrogel beads. Chem Eng J 174:586–594. doi:10.1016/j.cej.2011.09.064

    CAS  Article  Google Scholar 

  • Yang Z, Cheng S (2003) Synthesis and characterization of macrocyclic polyamine derivative of chitosan. J Appl Polym Sci 89:924–929

    CAS  Article  Google Scholar 

  • Yang Z, Li J (2002) Preparation and characterization of dihydroxyl mesocyclic diamine derivative of chitosan. J Appl Polym Sci 86:2677–2681. doi:10.1002/app.11214

    CAS  Article  Google Scholar 

  • Yang Z, Yang Y (2001) Synthesis, characterization, and adsorption properties of chitosan azacrown ethers bearing hydroxyl group. J Appl Polym Sci 81:1793–1798

    CAS  Article  Google Scholar 

  • Yang Z, Wang Y, Tang Y (1999) Preparation and adsorption properties of metal ions of crosslinked chitosan azacrown ethers. J Appl Polym Sci 74:3053–3058

    CAS  Article  Google Scholar 

  • Yang Z, Yuan Y, Wang Y (2000) Synthesis and evaluation of chitosan aryl azacrown ethers as adsorbents for metal ions. J Appl Polym Sci 77:3093–3098

    CAS  Article  Google Scholar 

  • Zhang X, Ding S, Wang Y et al (2006) Synthesis and adsorption properties of metal ions of novel azacrown ether crosslinked chitosan. J Appl Polym Sci 100:2705–2709. doi:10.1002/app.22941

    CAS  Article  Google Scholar 

  • Zhou L, Liu J, Liu Z (2009) Adsorption of platinum(IV) and palladium(II) from aqueous solution by thiourea-modified chitosan microspheres. J Hazard Mater 172:439–446. doi:10.1016/j.jhazmat.2009.07.030

    CAS  Article  Google Scholar 

  • Zougagh M, Cano Pavón JM, Garcia de Torres A (2005) Chelating sorbents based on silica gel and their application in atomic spectrometry. Anal Bioanal Chem 381:1103–1113. doi:10.1007/s00216-004-3022-2

    CAS  Article  Google Scholar 

Download references

Acknowledgments

Financial support from Russian Science Foundation (Project No 14-13-00136) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Bratskaya.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Azarova, Y.A., Pestov, A.V. & Bratskaya, S.Y. Application of chitosan and its derivatives for solid-phase extraction of metal and metalloid ions: a mini-review. Cellulose 23, 2273–2289 (2016). https://doi.org/10.1007/s10570-016-0962-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-0962-6

Keywords

  • Chitosan
  • Chitosan derivatives
  • Solid-phase extraction
  • Selectivity
  • Analysis