Arrascue ML, Garcia HM, Horna O, Guibal E (2003) Gold sorption on chitosan derivatives. Hydrometallurgy 71:191–200. doi:10.1016/S0304-386X(03)00156-7
CAS
Article
Google Scholar
Azarova YA, Pestov AV, Ustinov AY, Bratskaya SY (2015) Application of chitosan and its N-heterocyclic derivatives for preconcentration of noble metal ions and their determination using atomic absorption spectrometry. Carbohydr Polym 134:680–686. doi:10.1016/j.carbpol.2015.07.086
CAS
Article
Google Scholar
Baba Y, Masaaki K, Kawano Y (1994) Selective adsorption of copper(II) over iron(III) on chitosan derivative introducing pyridyl group. Chem Lett 23:2389–2392
Article
Google Scholar
Baba Y, Kawano Y, Hirakawa H (1996) Highly selective adsorption resins. 1. Preparation of chitosan derivatives containing 2-pyridylmethyl, 2-thienylmethyl, and 3-(methylthio)propyl groups and their selective adsorption of precious metal. Bull Chem Soc Jpn 69:1255–1260
CAS
Article
Google Scholar
Baba Y, Masaaki K, Kawano Y (1998) Synthesis of a chitosan derivative recognizing planar metal ion and its selective adsorption equilibria of copper (I) over iron (III) 1. React Funct Polym 36:167–172
CAS
Article
Google Scholar
Baba Y, Noma H, Nakayama R, Matsushita Y (2002) Preparation of chitosan derivatives containing methylthiocarbamoyl and phenylthiocarbamoyl groups and their selective adsorption of copper (II) and iron (III). Anal Sci 18:359–361
CAS
Article
Google Scholar
Bratskaya SY, Ustinov AY, Azarova YA, Pestov AV (2011) Thiocarbamoyl chitosan: synthesis, characterization and sorption of Au(III), Pt(IV), and Pd(II). Carbohydr Polym 85:854–861. doi:10.1016/j.carbpol.2011.04.008
CAS
Article
Google Scholar
Bratskaya SY, Azarova YA, Matochkina EG et al (2012) N-(2-(2-pyridyl)ethyl)chitosan: synthesis, characterization and sorption properties. Carbohydr Polym 87:869–875. doi:10.1016/j.carbpol.2011.08.081
CAS
Article
Google Scholar
Butewicz A, Gavilan KC, Pestov AV et al (2010) Palladium and platinum sorption on a thiocarbamoyl-derivative of chitosan. J Appl Polym Sci 116:3318–3330. doi:10.1002/app
CAS
Google Scholar
Cárdenas G, Orlando P, Edelio T (2001) Synthesis and applications of chitosan mercaptanes as heavy metal retention agent. Int J Biol Macromol 28:167–174
Article
Google Scholar
Carletto JS, Pietro Roux KCD, Maltez HF et al (2008) Use of 8-hydroxyquinoline-chitosan chelating resin in an automated on-line preconcentration system for determination of zinc(II) by F AAS. J Hazard Mater 157:88–93. doi:10.1016/j.jhazmat.2007.12.083
CAS
Article
Google Scholar
Chang Q, Zhang M, Wang J (2009) Removal of Cu2+ and turbidity from wastewater by mercaptoacetyl chitosan. J Hazard Mater 169:621–625. doi:10.1016/j.jhazmat.2009.03.144
CAS
Article
Google Scholar
Chassary P, Vincent T, Sanchez Marcano J et al (2005) Palladium and platinum recovery from bicomponent mixtures using chitosan derivatives. Hydrometallurgy 76:131–147. doi:10.1016/j.hydromet.2004.10.004
CAS
Article
Google Scholar
Cui C, He M, Chen B, Hu B (2014) Chitosan modified magnetic nanoparticles based solid phase extraction combined with ICP-OES for the speciation of Cr(III) and Cr(VI). Anal Methods 6:8577–8583. doi:10.1039/C4AY01609B
CAS
Article
Google Scholar
Dai J, Ren FL, Tao CY, Bai Y (2011) Synthesis of cross-linked chitosan and application to adsorption and speciation of Se (VI) and Se (IV) in environmental water samples by inductively coupled plasma optical emission spectrometry. Int J Mol Sci 12:4009–4020. doi:10.3390/ijms12064009
CAS
Article
Google Scholar
Dai B, Cao M, Fang G et al (2012) Schiff base-chitosan grafted multiwalled carbon nanotubes as a novel solid-phase extraction adsorbent for determination of heavy metal by ICP-MS. J Hazard Mater 219–220:103–110. doi:10.1016/j.jhazmat.2012.03.065
Article
Google Scholar
Dhakal RP, Oshima T, Baba Y (2008) Planarity-recognition enhancement of N-(2-pyridylmethyl)chitosan by imprinting planar metal ions. React Funct Polym 68:1549–1556. doi:10.1016/j.reactfunctpolym.2008.08.008
CAS
Article
Google Scholar
Ding S, Zhang X, Feng X, Wang Y, Ma S, Peng Q, Zhang W (2006) Synthesis of N, N’-diallyldibenzo 18-crown-6 crown ether crosslinked chitosan and their adsorption properties for metal ions. React Funct Polym 66:357–363
CAS
Article
Google Scholar
Ding P, Huang KL, Li GY, Zeng WW (2007) Mechanisms and kinetics of chelating reaction between novel chitosan derivatives and Zn(II). J Hazard Mater 146:58–64. doi:10.1016/j.jhazmat.2006.11.061
CAS
Article
Google Scholar
Donia AM, Atia AA, Elwakeel KZ (2007) Recovery of gold(III) and silver(I) on a chemically modified chitosan with magnetic properties. Hydrometallurgy 87:197–206. doi:10.1016/j.hydromet.2007.03.007
CAS
Article
Google Scholar
El-Sherbiny IM (2009) Synthesis, characterization and metal uptake capacity of a new carboxymethyl chitosan derivative. Eur Polym J 45:199–210. doi:10.1016/j.eurpolymj.2008.10.042
CAS
Article
Google Scholar
Emara AAA, Tawab MA, El-ghamry MA, Elsabee MZ (2011) Metal uptake by chitosan derivatives and structure studies of the polymer metal complexes. Carbohydr Polym 83:192–202. doi:10.1016/j.carbpol.2010.07.040
CAS
Article
Google Scholar
Fan L, Luo C, Lv Z et al (2011) Removal of Ag+ from water environment using a novel magnetic thiourea-chitosan imprinted Ag+. J Hazard Mater 194:193–201. doi:10.1016/j.jhazmat.2011.07.080
CAS
Article
Google Scholar
Fu X, Liu H, Liu Y, Liu Y (2013) Application of chitosan and its derivatives in analytical chemistry: a mini-review. J Carbohydr Chem 32:463–474. doi:10.1080/07328303.2013.863318
CAS
Article
Google Scholar
Gao Y, Lee K-H, Oshima M, Motomizu S (2000) Adsorption behavior of metal ions on cross-linked chitosan and the determination of oxoanions after pretreatment with a chitosan column. Anal Sci 16:1303–1308. doi:10.2116/analsci.16.1303
CAS
Article
Google Scholar
Gao Y, Oshita K, Lee K-H et al (2002) Development of column-pretreatment chelating resins for matrix elimination/multi-element determination by inductively coupled plasma-mass spectrometry. Analyst 127:1713–1719. doi:10.1039/b208341h
CAS
Article
Google Scholar
Gavilan KC, Pestov AV, Garcia HM et al (2009) Mercury sorption on a thiocarbamoyl derivative of chitosan. J Hazard Mater 165:415–426. doi:10.1016/j.jhazmat.2008.10.005
CAS
Article
Google Scholar
Ge H, Huang S (2010) Microwave preparation and adsorption properties of EDTA-modified cross-linked chitosan. J Appl Polym Sci 115:514–519. doi:10.1002/app
CAS
Article
Google Scholar
Guibal E (2004) Interactions of metal ions with chitosan-based sorbents: a review. Sep Purif Technol 38:43–74. doi:10.1016/j.seppur.2003.10.004
CAS
Article
Google Scholar
Guibal E, Vincent T, Mendoza RN (2000) Synthesis and characterization of a thiourea derivative of chitosan for platinum recovery. J Appl Polym Sci 75:119–134
Article
Google Scholar
Guibal E, Von Offenberg Sweeney N, Vincent T, Tobin JM (2002) Sulfur derivatives of chitosan for palladium sorption. React Funct Polym 50:149–163
CAS
Article
Google Scholar
Hakim L, Sabarudin A, Oshima M, Motomizu S (2007) Synthesis of novel chitosan resin derivatized with serine diacetic acid moiety and its application to on-line collection/concentration of trace elements and their determination using inductively coupled plasma-atomic emission spectrometry. Anal Chim Acta 588:73–81. doi:10.1016/j.aca.2007.01.066
CAS
Article
Google Scholar
Hakim L, Sabarudin A, Oshita K et al (2008) Synthesis of cross-linked chitosan functionalized with threonine moiety and its application to on-line collection/concentration and determination of Mo, V and Cu. Talanta 74:977–985. doi:10.1016/j.talanta.2007.08.012
CAS
Article
Google Scholar
He J-C, Zhou F-Q, Mao Y-F et al (2013) Preconcentration of trace cadmium (II) and copper (II) in environmental water using a column packed with modified silica gel-chitosan prior to flame atomic absorption spectrometry determination. Anal Lett 46:1430–1441. doi:10.1080/00032719.2013.764533
CAS
Article
Google Scholar
Hosoba M, Oshita K, Katarina RK et al (2009) Synthesis of novel chitosan resin possessing histidine moiety and its application to the determination of trace silver by ICP-AES coupled with triplet automated-pretreatment system. Anal Chim Acta 639:51–56. doi:10.1016/j.aca.2009.02.050
CAS
Article
Google Scholar
Hu D, Cui Y, Dong X, Fang Y (2001) Studies on CoSalen immobilized onto N- (4-pyridylmethylidene)–chitosan. React Funct Polym 48:201–207
CAS
Article
Google Scholar
Hu D, Fang Y, Gao G, Wang M (2006) Studies on CoSalen immobilized onto N-(4-methylimidazole)-chitosan. J Appl Polym Sci 101:2431–2436. doi:10.1002/app.24019
CAS
Article
Google Scholar
Humeres E, De Souza EP, Debacher NA, Aliev AE (2002) Synthesis and coordinating ability of chitosan dithiocarbamate and analogs towards Cu(II) ions. J Phys Org Chem 15:852–857. doi:10.1002/poc.559
CAS
Article
Google Scholar
Inoue K, Yoshizuka K, Ohto K (1999) Adsorptive separation of some metal ions by complexing agent types of chemically modified chitosan. Anal Chim Acta 388:209–218
CAS
Article
Google Scholar
Julkapli NM, Ahmad Z, Akil HM (2010) Preparation and characterization of 1,2,4,5-benzenetetra carboxylic-chitosan. e-Polymers 10:841–857
Google Scholar
Kannamba B, Reddy KL, AppaRao BV (2010) Removal of Cu(II) from aqueous solutions using chemically modified chitosan. J Hazard Mater 175:939–948. doi:10.1016/j.jhazmat.2009.10.098
CAS
Article
Google Scholar
Katarina RK, Takayanagi T, Oshima M, Motomizu S (2006) Synthesis of a chitosan-based chelating resin and its application to the selective concentration and ultratrace determination of silver in environmental water samples. Anal Chim Acta 558:246–253. doi:10.1016/j.aca.2005.11.010
CAS
Article
Google Scholar
Katarina RK, Oshima M, Motomizu S (2009) High-capacity chitosan-based chelating resin for on-line collection of transition and rare-earth metals prior to inductively coupled plasma-atomic emission spectrometry measurement. Talanta 79:1252–1259. doi:10.1016/j.talanta.2009.05.030
CAS
Article
Google Scholar
Kawamura Y, Mitsuhashi M, Tanibe H, Yoshida H (1993) Adsorption of Metal Ions on Polyaminated Highly Porous Chitosan Chelating Resin. Ind Eng Chem Res 32:386–391
CAS
Article
Google Scholar
Khan A, Badshah S, Airoldi C (2011) Dithiocarbamated chitosan as a potent biopolymer for toxic cation remediation. Colloids Surf B Biointerfaces 87:88–95. doi:10.1016/j.colsurfb.2011.05.006
CAS
Article
Google Scholar
Kumagai H, Inoue Y, Yokoyama T et al (1998) Chromatographic selectivity of rare earth elements on iminodiacetate-type chelating resins having spacer arms of different lengths: importance of steric flexibility of functional group in a polymer chelating resin. Anal Chem 70:4070–4073. doi:10.1021/ac980334v
CAS
Article
Google Scholar
Lee K, Oshima M, Takayanagi T, Motomizu S (2000) Simultaneous determination of trace elements in river-water samples by ICP-MS in combination with a discrete microsampling technique after enrichment with a chitosan-based chelating resin. Anal Sci 16:731–738
CAS
Article
Google Scholar
Leonhardt SES, Stolle A, Ondruschka B et al (2010) Chitosan as a support for heterogeneous Pd catalysts in liquid phase catalysis. Appl Catal A Gen 379:30–37. doi:10.1016/j.apcata.2010.02.029
CAS
Article
Google Scholar
Li F, Bao C, Zhang J et al (2010) Sorption technique for the determination of trace palladium in geological samples using atomic absorption spectrometry. Anal Lett 43:1857–1868. doi:10.1080/00032710903502165
CAS
Article
Google Scholar
Lü H, An H, Wang X, Xie Z (2013) Preparation of carboxymethyl chitosan-graft-β-cyclodextrin modified silica gel and preconcentration of cadmium. Int J Biol Macromol 61:359–362. doi:10.1016/j.ijbiomac.2013.07.023
Article
Google Scholar
Minamisawa H, Arai N, Okutani T (1999) Electrothermal atomic absorption spectrometric determination of copper (II) using a tungsten metal furnace after preconcentration onto chitosan. Anal Sci 15:269–275
CAS
Article
Google Scholar
Minamisawa H, Minamisawa M, Ando M et al (2006) Preconcentration of trace amounts of Cu(II) into the liquid—liquid interface with chitosan and its determination by graphite furnace atomic absorption spectrometry. Bunseki Kagaku 55:573–578
CAS
Article
Google Scholar
Mladenova E, Karadjova I, Tsalev DL (2012) Solid-phase extraction in the determination of gold, palladium, and platinum. J Sep Sci 35:1249–1265. doi:10.1002/jssc.201100885
CAS
Article
Google Scholar
Moghimi A (2014) Separation and extraction of Co(II) using magnetic chitosan nanoparticles grafted with β-cyclodextrin and determination by FAAS. Russ J Phys Chem A 88:2157–2164. doi:10.1134/S0036024414120024
CAS
Article
Google Scholar
Muzzarelli RAA, Mattioli-Belmonte M, Tietz C et al (1994) Stimulatory effect on bone formation exerted by a modified chitosan. Biomaterials 15:1075–1081
CAS
Article
Google Scholar
Ninomiya T, Oshita K, Oshima M, Motomizu S (2003) Synthesis of dithiocarbamate-chitosan resin and its adsorption behavior for trace metals. Bunseki Kagaku 52:811–817
Article
Google Scholar
Oshita K (2004) Synthesis of novel solid materials for the separation of metals by derivatizing biomass with functional moieties and their application to analytical chemistry. Bunseki Kagaku 53:187–188
CAS
Google Scholar
Oshita K, Motomizu S (2008) Development of chelating resins and their ability of collection and separation for metal ions. Bunseki Kagaku 57:291–311. doi:10.2116/bunsekikagaku.57.291
CAS
Article
Google Scholar
Oshita K, Seo K, Sabarudin A et al (2008) Synthesis of chitosan resin possessing a phenylarsonic acid moiety for collection/concentration of uranium and its determination by ICP-AES. Anal Bioanal Chem 390:1927–1932. doi:10.1007/s00216-008-1931-1
CAS
Article
Google Scholar
Owawa H, Shimiza T, Uehara N (2007) Preconcentration of heavy metal ions with thermo-sensitive chitosan and atomic absorption spectrometric determination of trace cadmium in water. Bunseki Kagaku 56:721–728
Article
Google Scholar
Park S-I, Kwak IS, Won SW, Yun Y-S (2013) Glutaraldehyde-crosslinked chitosan beads for sorptive separation of Au(III) and Pd(II): opening a way to design reduction-coupled selectivity-tunable sorbents for separation of precious metals. J Hazard Mater 248–249:211–218. doi:10.1016/j.jhazmat.2013.01.013
Article
Google Scholar
Pestov A, Bratskaya S (2016) Chitosan and its derivatives as highly efficient polymer ligands. Molecules. doi:10.3390/molecules21030330
Google Scholar
Pestov AV, Koryakova OV, Leonidov II, Yatluk YG (2010) Gel-synthesis, structure, and properties of sulfur-containing chitosan derivatives. Russ J Appl Chem 83:787–794. doi:10.1134/S1070427210050058
CAS
Article
Google Scholar
Pestov AV, Bratskaya SY, Azarova YA, Yatluk YG (2012) Imidazole-containing chitosan derivative: a new synthetic approach and sorption properties. Russ Chem Bull 61:1959–1964
CAS
Article
Google Scholar
Repo E, Warchol JK, Kurniawan TA, Sillanpää MET (2010) Adsorption of Co(II) and Ni(II) by EDTA- and/or DTPA-modified chitosan: kinetic and equilibrium modeling. Chem Eng J 161:73–82. doi:10.1016/j.cej.2010.04.030
CAS
Article
Google Scholar
Rodrigues CA, Laranjeira MCM, Stadler E, Drago V (2000) Preparation and characterization of the pentacyanoferrate (II) on the surface of N-(4-pyridilmethylidene) chitosan. Carbohydr Polym 42:311–314
CAS
Article
Google Scholar
Sabarudin A, Oshita K, Oshima M, Motomizu S (2005a) Synthesis of chitosan resin possessing 3,4-diamino benzoic acid moiety for the collection/concentration of arsenic and selenium in water samples and their measurement by inductively coupled plasma-mass spectrometry. Anal Chim Acta 542:207–215. doi:10.1016/j.aca.2005.03.070
CAS
Article
Google Scholar
Sabarudin A, Oshita K, Oshima M, Motomizu S (2005b) Synthesis of cross-linked chitosan possessing N-methyl-d-glucamine moiety (CCTS-NMDG) for adsorption/concentration of boron in water samples and its accurate measurement by ICP-MS and ICP-AES. Talanta 66:136–144. doi:10.1016/j.talanta.2004.10.011
CAS
Article
Google Scholar
Sabarudin A, Oshima M, Noguchi O, Motomizu S (2007a) Functionalization of chitosan with 3-nitro-4-amino benzoic acid moiety and its application to the collection/concentration of molybdenum in environmental water samples. Talanta 73:831–837
CAS
Article
Google Scholar
Sabarudin A, Oshima M, Takayanagi T et al (2007b) Functionalization of chitosan with 3,4-dihydroxybenzoic acid for the adsorption/collection of uranium in water samples and its determination by inductively coupled plasma-mass spectrometry. Anal Chim Acta 581:214–220. doi:10.1016/j.aca.2006.08.024
CAS
Article
Google Scholar
Sabarudin A, Umemura T, Motomizu S (2011) Chitosan functionalized with di-2-propanolamine: its application as solid phase extractant for the determination of germanium in water samples by ICP-MS. Microchem J 99:34–39. doi:10.1016/j.microc.2011.03.004
CAS
Article
Google Scholar
Shinde RN, Pandey AK, Acharya R et al (2013) Chitosan-transition metal ions complexes for selective arsenic(V) preconcentration. Water Res 47:3497–3506. doi:10.1016/j.watres.2013.03.059
CAS
Article
Google Scholar
Skorik YA, Gomes CAR, Podberezskaya NV et al (2005) Complexation models of N- (2-carboxyethyl) chitosans with copper(II) ions. Biomacromolecules 6:189–195
CAS
Article
Google Scholar
Smith RM, Martell AE (1989) Critical stability constants, vol 6. Springer, US
Sokovnin SYu, Balezin ME, Puzyrev IS, Pestov AV, Yatluk YuG (2009) Sorbents based on N-(-2-carboxyethyl) chitosan cross-linked by nanosecond electron beams. Russ Chem Bull Int Ed 58:1172–1179
CAS
Article
Google Scholar
Sun S, Wang A (2006a) Adsorption kinetics of Cu(II) ions using N, O-carboxymethyl-chitosan. J Hazard Mater B 131:103–111. doi:10.1016/j.jhazmat.2005.09.012
CAS
Article
Google Scholar
Sun S, Wang A (2006b) Adsorption properties and mechanism of cross-linked carboxymethyl-chitosan resin with Zn(II) as template ion. React Funct Polym 66:819–826. doi:10.1016/j.reactfunctpolym.2005.11.008
CAS
Article
Google Scholar
Sun S, Wang A (2006c) Adsorption properties of N-succinyl-chitosan and cross-linked N-succinyl-chitosan resin with Pb(II) as template ions. Sep Purif Technol 51:409–415. doi:10.1016/j.seppur.2006.03.004
CAS
Article
Google Scholar
Sun JM, Xu P, Sun HW (2004) Determination of Cu(II), Zn(II), Co(II), Ni(II), Pb(II) and Cd(II) by chitosan separation-flame atomic absorption spectrometry. Chin J Anal Chem 32:1356–1358
CAS
Google Scholar
Suneetha Y, Kumar BN, Harinath Y et al (2012) Functionalization of cross linked chitosan with 2-aminopyridine-3-carboxylic acid for solid phase extraction of cadmium and zinc ions and their determination by atomic absorption spectrometry. Microchim Acta 176:169–176. doi:10.1007/s00604-011-0707-z
CAS
Article
Google Scholar
Tong J, Li Z, Xia C (2005) Highly efficient catalysts of chitosan-Schiff base Co(II) and Pd(II) complexes for aerobic oxidation of cyclohexane in the absence of reductants and solvents. J Mol Catal A Chem 231:197–203. doi:10.1016/j.molcata.2005.01.011
CAS
Article
Google Scholar
Wan Ibrahim WA, Abd Ali LI, Sulaiman A et al (2014) Application of solid-phase extraction for trace elements in environmental and biological samples: a review. Crit Rev Anal Chem 44:233–254. doi:10.1080/10408347.2013.855607
CAS
Article
Google Scholar
Wan L, Wang Y, Qian S (2002) Study on the adsorption properties of novel crown ether crosslinked chitosan for metal ions. J Appl Polym Sci 84:29–34. doi:10.1002/app.10180
CAS
Article
Google Scholar
Wang M, Xu L, Peng J et al (2009) Adsorption and desorption of Sr(II) ions in the gels based on polysaccharide derivates. J Hazard Mater 171:820–826. doi:10.1016/j.jhazmat.2009.06.071
CAS
Article
Google Scholar
Wang H, Bao C, Li F et al (2010a) Preparation and application of 4-amino-4′-nitro azobenzene modified chitosan as a selective adsorbent for the determination of Au(III) and Pd(II). Microchim Acta 168:99–105. doi:10.1007/s00604-009-0265-9
CAS
Article
Google Scholar
Wang L, Xing R, Liu S et al (2010b) Recovery of silver (I) using a thiourea-modified chitosan resin. J Hazard Mater 180:577–582. doi:10.1016/j.jhazmat.2010.04.072
CAS
Article
Google Scholar
Wang H, Li C, Bao C et al (2011) Adsorption and determination of Pd(II) and Pt(IV) onto 3′-Nitro-4-amino azobenzene modified chitosan. J Chem Eng Data 56:4203–4207
CAS
Article
Google Scholar
Wu Y, Jiang Y, Han D et al (2007) Speciation of chromium in water using crosslinked chitosan-bound FeC nanoparticles as solid-phase extractant, and determination by flame atomic absorption spectrometry. Microchim Acta 159:333–339. doi:10.1007/s00604-007-0772-5
CAS
Article
Google Scholar
Xiong C, Pi L, Chen X et al (2013) Adsorption behavior of Hg2+ in aqueous solutions on a novel chelating cross-linked chitosan microsphere. Carbohydr Polym 98:1222–1228. doi:10.1016/j.carbpol.2013.07.034
CAS
Article
Google Scholar
Yan H, Dai J, Yang Z et al (2011) Enhanced and selective adsorption of copper(II) ions on surface carboxymethylated chitosan hydrogel beads. Chem Eng J 174:586–594. doi:10.1016/j.cej.2011.09.064
CAS
Article
Google Scholar
Yang Z, Cheng S (2003) Synthesis and characterization of macrocyclic polyamine derivative of chitosan. J Appl Polym Sci 89:924–929
CAS
Article
Google Scholar
Yang Z, Li J (2002) Preparation and characterization of dihydroxyl mesocyclic diamine derivative of chitosan. J Appl Polym Sci 86:2677–2681. doi:10.1002/app.11214
CAS
Article
Google Scholar
Yang Z, Yang Y (2001) Synthesis, characterization, and adsorption properties of chitosan azacrown ethers bearing hydroxyl group. J Appl Polym Sci 81:1793–1798
CAS
Article
Google Scholar
Yang Z, Wang Y, Tang Y (1999) Preparation and adsorption properties of metal ions of crosslinked chitosan azacrown ethers. J Appl Polym Sci 74:3053–3058
CAS
Article
Google Scholar
Yang Z, Yuan Y, Wang Y (2000) Synthesis and evaluation of chitosan aryl azacrown ethers as adsorbents for metal ions. J Appl Polym Sci 77:3093–3098
CAS
Article
Google Scholar
Zhang X, Ding S, Wang Y et al (2006) Synthesis and adsorption properties of metal ions of novel azacrown ether crosslinked chitosan. J Appl Polym Sci 100:2705–2709. doi:10.1002/app.22941
CAS
Article
Google Scholar
Zhou L, Liu J, Liu Z (2009) Adsorption of platinum(IV) and palladium(II) from aqueous solution by thiourea-modified chitosan microspheres. J Hazard Mater 172:439–446. doi:10.1016/j.jhazmat.2009.07.030
CAS
Article
Google Scholar
Zougagh M, Cano Pavón JM, Garcia de Torres A (2005) Chelating sorbents based on silica gel and their application in atomic spectrometry. Anal Bioanal Chem 381:1103–1113. doi:10.1007/s00216-004-3022-2
CAS
Article
Google Scholar