Skip to main content
Log in

A robust friendly nano-encapsulated plant extract in hydrogel Tragacanth gum on cotton fabric through one single step in-situ synthesis and fabrication

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Encapsulation of various materials on textiles is an interesting task because of the controlled release and higher stability. Here, a robust cotton fabric was prepared through novel simultaneous treatment and nano-encapsulation of Chamomile extract using Tragacanth gum (TG) as the wall material and an environmentally friendly binder with hydrogel properties. The nano-encapsulated and treated cotton (NE&TC) fabric was characterized by FESEM, FT-IR and UV-Vis spectrophotometry, which indicated the successful encapsulation of the plant extract within the TG and material and linkage on the cotton fabric. The peaks at 1736 and 1777 cm−1 related to the TG and Chamomile extract in the FT-IR spectrum and a strong peak around 270–400 nm in the UV-Vis spectrum of the NE&TC fabric confirmed the nano-encapsulation and treatment. The prepared NE&TC fabric indicated a relatively good washing and rubbing durability with reasonable release behavior. The DSC pattern of the NE&TC fabric showed a peak at 162 °C confirming the presence of Chamomile extract in the nanocapsules. This article proposes a novel method for the application of TG as a natural polymer on cotton fabric for obtaining multifunction purposes including in-situ synthesis of encapsulated Chamomile extract, stabilization of nanocapsules and introduction of hydrogel properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • AATCC Test Method 79-2014, Absorbency of textiles. American Association of Textile Chemists and Colorists, Research Triangle Park, NC, USA

  • Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6:105–121. doi:10.1016/j.jare.2013.07.006

    Article  CAS  Google Scholar 

  • ASTM D-1388-64 (1975) Method A: standard test method for stiffness of fabrics. ASTM, New York

    Google Scholar 

  • ASTM D2402–07 (2012) Standard test method for water retention of textile fibers (centrifuge procedure). ASTM International, West Conshohocken

    Google Scholar 

  • Chen S, Chen S, Jiang S, Xiong M, Luo J, Tang J, Ge Z (2011a) Environmentally friendly antibacterial cotton textiles finished with siloxane sulfopropylbetaine. ACS Appl Mater Interfaces 3:1154–1162. doi:10.1021/am101275d

    Article  CAS  Google Scholar 

  • Chen X, Yu J, Zhang Z, Lu C (2011b) Study on structure and thermal stability properties of cellulose fibers from rice straw. Carbohydr Polym 85:245–250. doi:10.1016/j.carbpol.2011.02.022

    Article  CAS  Google Scholar 

  • Dastjerdi R, Montazer M (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf B 79:5–18. doi:10.1016/j.colsurfb.2010.03.029

    Article  CAS  Google Scholar 

  • Dong X, Zhu Q, Dai Y, He J, Pan H, Chen J, Zheng Z-P (2016) Encapsulation artocarpanone and ascorbic acid in O/W microemulsions: preparation, characterization, and antibrowning effects in apple juice. Food Chem 192:1033–1040

    Article  CAS  Google Scholar 

  • El-Shishtawy RM, Asiri AM, Abdelwahed NAM, Al-Otaibi MM (2011) In situ production of silver nanoparticle on cotton fabric and its antimicrobial evaluation. Cellulose 18:75–82

    Article  CAS  Google Scholar 

  • Ghayempour S, Mortazavi SM (2013) Fabrication of micro–nanocapsules by a new electrospraying method using coaxial jets and examination of effective parameters on their production. J Electrostat 71:717–727. doi:10.1016/j.elstat.2013.04.001

    Article  Google Scholar 

  • Ghayempour S, Mortazavi SM (2014) Antibacterial activity of peppermint fragrance micro–nanocapsules prepared with a new electrospraying method. J Essent Oil Res 26:492–498. doi:10.1080/10412905.2014.949882

    Article  CAS  Google Scholar 

  • Ghayempour S, Mortazavi SM (2015a) Microwave curing for applying polymeric nanocapsules containing essential oils on cotton fabric to produce antimicrobial and fragrant textiles. Cellulose 22:4065–4075. doi:10.1007/s10570-015-0765-1

    Article  CAS  Google Scholar 

  • Ghayempour S, Mortazavi SM (2015b) Preparation and investigation of sodium alginate nanocapsules by different microemulsification devices. J Appl Polym Sci. doi:10.1002/app.41904

    Google Scholar 

  • Ghayempour S, Montazer M, Mahmoudi Rad M (2015) Tragacanth gum as a natural polymeric wall for producing antimicrobial nanocapsules loaded with plant extract. Int J Biol Macromol 81:514–520. doi:10.1016/j.ijbiomac.2015.08.041

    Article  CAS  Google Scholar 

  • Ghayempour S, Montazer M, Mahmoudi Rad M (2016) Tragacanth gum biopolymer as reducing and stabilizing agent in biosonosynthesis of urchin-like ZnO nanorod arrays: a low cytotoxic photocatalyst with antibacterial and antifungal properties. Carbohydr Polym 136:232–241. doi:10.1016/j.carbpol.2015.09.001

    Article  CAS  Google Scholar 

  • Ghosh SK (2006) Functional coatings and microencapsulation: a general perspective. In: Functional coatings. Wiley-VCH Verlag GmbH & Co. KGaA, pp 1–28. doi:10.1002/3527608478.ch1

  • Gupta S (2011) Biocompatible microemulsion systems for drug encapsulation and delivery. Curr Sci 101:174–188

    CAS  Google Scholar 

  • International Standard, ISO 105-C10 (2006) Textiles-tests for colour fastness: colour fastness to washing with soap or soap and soda. International Organization for Standardization (ISO), Switzerland

  • International Standard, ISO 105-X12 (2001) Textiles-tests for colour fastness: colour fastness to rubbing. International Organization for Standardization (ISO), Switzerland

  • Kang Z-Z, Zhang B, Jiao Y-C, Xu Y-H, He Q-Z, Liang J (2013) High-efficacy antimicrobial cellulose grafted by a novel quaternarized N-halamine. Cellulose 20:885–893

    Article  CAS  Google Scholar 

  • Kristensen JB, Meyer RL, Poulsen CH, Kragh KM, Besenbacher F, Laursen BS (2010) Biomimetic silica encapsulation of enzymes for replacement of biocides in antifouling coatings. Green Chem 12:387–394. doi:10.1039/B913772F

    Article  CAS  Google Scholar 

  • Kumar A, Kulkarni P, Samui AB (2014) Polyethylene glycol grafted cotton as phase change polymer. Cellulose 21:685–696. doi:10.1007/s10570-013-0120-3

    Article  CAS  Google Scholar 

  • Li S, Boyter H, Qian L (2005) UV curing for encapsulated aroma finish on cotton. The Journal of The Textile Institute 96:407–411. doi:10.1533/joti.2005.0116

    Article  CAS  Google Scholar 

  • Li Z et al (2015) Sonochemical synthesis of hydrophilic drug loaded multifunctional bovine serum albumin nanocapsules. ACS Applied Materials & Interfaces 7:19390–19397. doi:10.1021/acsami.5b05558

    Article  CAS  Google Scholar 

  • Liu Y, Liu Y, Ren X, Huang TS (2014) Antimicrobial cotton containing N-halamine and quaternary ammonium groups by grafting copolymerization. Appl Surf Sci 296:231–236. doi:10.1016/j.apsusc.2014.01.106

    Article  CAS  Google Scholar 

  • Manna J, Goswami S, Shilpa N, Sahu N, Rana RK (2015) Biomimetic method to assemble nanostructured Ag@ZnO on cotton fabrics: application as self-cleaning flexible materials with visible-light photocatalysis and antibacterial activities. ACS Appl Mater Interfaces 7:8076–8082. doi:10.1021/acsami.5b00633

    Article  CAS  Google Scholar 

  • McKay DL, Blumberg JB (2006) A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.). Phytother Res 20:619–633. doi:10.1002/ptr.1936

    Article  CAS  Google Scholar 

  • Mondal S (2008) Phase change materials for smart textiles—an overview. Appl Therm Eng 28:1536–1550

    Article  CAS  Google Scholar 

  • Montazer M, Kahali P (2016) A novel polyvinyl alcohol–tragacanth/nano silver hydrogel on polyester fabric through in situ synthesis method. J Ind Text 45:1635–1651

  • Murillo-Cremaes N, Lopez-Periago AM, Saurina J, Roig A, Domingo C (2010) A clean and effective supercritical carbon dioxide method for the host-guest synthesis and encapsulation of photoactive molecules in nanoporous matrices. Green Chem 12:2196–2204. doi:10.1039/C004762G

    Article  CAS  Google Scholar 

  • Roby MHH, Sarhan MA, Selim KA-H, Khalel KI (2013) Antioxidant and antimicrobial activities of essential oil and extracts of fennel (Foeniculum vulgare L.) and chamomile (Matricaria chamomilla L.). Ind Crops Prod 44:437–445. doi:10.1016/j.indcrop.2012.10.012

    Article  CAS  Google Scholar 

  • Rodrigues SN, Martins IM, Fernandes IP, Gomes PB, Mata VG, Barreiro MF, Rodrigues AE (2009) Scentfashion®: microencapsulated perfumes for textile application. Chem Eng J 149:463–472

    Article  CAS  Google Scholar 

  • Sánchez P, Sánchez-Fernandez MV, Romero A, Rodríguez JF, Sánchez-Silva L (2010) Development of thermo-regulating textiles using paraffin wax microcapsules. Thermochim Acta 498:16–21

    Article  Google Scholar 

  • Shen Y, Zhen L, Huang D, Xue J (2014) Improving anti-UV performances of cotton fabrics via graft modification using a reactive UV-absorber. Cellulose 21:3745–3754. doi:10.1007/s10570-014-0367-3

    Article  CAS  Google Scholar 

  • SIST-EN 12127 (1999) Determination of mass per unit area using small samples. CEN, Brussels

    Google Scholar 

  • SIST-EN ISO 5084:1999 (1996) Determination of thickness of textiles and textile products. CEN, Brussels

    Google Scholar 

  • Solomon B, Sahle FF, Gebre-Mariam T, Asres K, Neubert RHH (2012) Microencapsulation of citronella oil for mosquito-repellent application: formulation and in vitro permeation studies. Eur J Pharm Biopharm 80:61–66

    Article  CAS  Google Scholar 

  • Yu W, Lin J, Liu X, Xie H, Zhao W, Ma X (2010) Quantitative characterization of membrane formation process of alginate–chitosan microcapsules by GPC. J Membr Sci 346:296–301

    Article  CAS  Google Scholar 

  • Zhang L et al (2011) Bioinspired preparation of polydopamine microcapsule for multienzyme system construction. Green Chem 13:300–306. doi:10.1039/C0GC00432D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Montazer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghayempour, S., Montazer, M. A robust friendly nano-encapsulated plant extract in hydrogel Tragacanth gum on cotton fabric through one single step in-situ synthesis and fabrication. Cellulose 23, 2561–2572 (2016). https://doi.org/10.1007/s10570-016-0958-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-0958-2

Keywords

Navigation