Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment

Abstract

The development and production of fossil fuel alternatives have become one of the main focal points in recent investigations. Lignocellulosic biomass is a renewable source of fermentable sugars for second-generation biofuels and chemicals via biotechnological pathways. However, the presence of lignin and hemicellulose in lignocellulosic biomass makes it difficult for the biomass to be hydrolyzed or digested during fermentation. Thus, effective biomass pretreatment is vital. The present review shows that chemical pretreatment is the current preferred method to obtain high sugar yields at low cost, with dilute acid and alkaline hydrolysis as the two most reported technologies. Dilute acid favours hydrolysis of the hemicelluloses whereas alkaline hydrolysis targets the lignin fraction. Both methods have merits and demerits, and have been combined with other treatments such as hydrothermal and enzymatic hydrolysis. Further investigation is required to improve the pretreatment processes and to ensure the economic viability of bioconversion.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK (2004) Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc 126:9142–9147

    CAS  Article  Google Scholar 

  2. An YX, Zong MH, Wu H, Li N (2015) Pretreatment of lignocellulosic biomass with renewable cholinium ionic liquids: biomass fractionation, enzymatic digestion and ionic liquid reuse. Bioresour Technol 192:165–171

    CAS  Article  Google Scholar 

  3. Asgher M, Ahmad Z, Iqbal HMN (2013) Alkali and enzymatic delignification of sugarcane bagasse to expose cellulose polymers for saccharification and bio-ethanol production. Ind Crop Prod 44:488–495

    CAS  Article  Google Scholar 

  4. Auxenfans T, Buchoux S, Husson E, Sarazin C (2014) Efficient enzymatic saccharification of Miscanthus: energy-saving by combining dilute acid and ionic liquid pretreatments. Biomass Bioenergy 62:82–92

    CAS  Article  Google Scholar 

  5. Baadhe RR, Potumarthi R, Mekala NK (2014) Influence of dilute acid and alkali pretreatment on reducing sugar production from corncobs by crude enzymatic method: a comparative study. Bioresour Technol 162:213–217

    CAS  Article  Google Scholar 

  6. Bacovsky D, Dallos M, Woergetter M (2010) Status of 2nd generation biofuels demonstration facilities in June 2010. IEA Bioenergy Task 39: Commercializing 1st and 2nd generation liquid biofuels from biomass

  7. Baffes J, Kose MA, Ohnsorge F, Stocker M (2015) The great plunge in oil prices: causes, consequences, and policy responses. World Bank Group Policy Research Note 9–10

  8. Bahrani S, Raeissi S, Sarshar M (2015) Experimental investigation of ionic liquid pretreatment of sugarcane bagasse with 1,3-dimethylimadazolium dimethyl phosphate. Bioresour Technol 185:411–415

    CAS  Article  Google Scholar 

  9. Balat A (2009) Gasification of biomass to produce gaseous products. Energy Source Part A 31:516–526

    CAS  Article  Google Scholar 

  10. Barman DN, Haque MA, Kang TH, Kim GH, Kim TY, Kim MK, Yun HD (2014) Effect of mild alkali pretreatment on structural changes of reed (Phragmites communis Trinius) straw. Environ Technol 35(2):232–241

    Article  CAS  Google Scholar 

  11. Bazargan A, Bazargan M, McKay G (2015) Optimization of rice husk pretreatment for energy production. Renew Energy 77:512–520

    CAS  Article  Google Scholar 

  12. Bensah EC, Mensah M (2013) Chemical pretreatment methods for the production of cellulosic ethanol: technologies and innovations. Int J Chem Eng. doi:10.1155/2013/719607

    Google Scholar 

  13. Cardoso WS, Tardin FD, Tavares GP, Queiroz PV, Mota SS, Catarina M, Kasuya M, Queiroz JHD (2013) Use of sorghum straw (sorghum bicolor) for second generation ethanol production: pretreatment and enzymatic hydrolysis. Quim Nova 36(5):623–627

    CAS  Article  Google Scholar 

  14. Castro E, Nieves IU, Mullinnix MT (2014) Optimization of dilute-phosphoric-acid steam pretreatment of Eucalyptus benthamii for biofuel production. Appl Energy 125:76–83

    CAS  Article  Google Scholar 

  15. Chandra RP, Gourlay K, Kim CS, Saddler JN (2015) Enhancing hemicellulose recovery and the enzymatic hydrolysis of cellulose by adding lignosulfonates during the two-stage steam pretreatment of poplar. ACS Sustain Chem Eng 3:986–991

    CAS  Article  Google Scholar 

  16. Chen M, Zhao J, Xia L (2009) Comparison of four different chemical pretreatments of corn stover for enhancing enzymatic digestibility. Biomass Bioenergy 33:1381–1385

    CAS  Article  Google Scholar 

  17. Chen WS, Tu YJ, Sheen HK (2011) Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating. Appl Energy 88:2726–2734

    CAS  Article  Google Scholar 

  18. Chen WS, Ye SC, Sheen HK (2012) Hydrolysis characteristics of sugarcane bagasse pretreated by dilute acid solution in a microwave irradiation environment. Appl Energy 93:237–244

    CAS  Article  Google Scholar 

  19. Chiesa S, Gnansounou E (2014) Use of empty fruit bunches from the oil palm for bioethanol production: a thorough comparison between dilute acid and dilute alkali pretreatment. Bioresour Technol 159:355–364

    CAS  Article  Google Scholar 

  20. Chundawat SPS, Vismeh R, Sharma LN, Humpula JF, Sousa LDC, Chambliss CK, Jones AD, Balan V, Dale BE (2010) Multifaceted characterization of cell wall decomposition products formed during ammonia fiber expansion (AFEX) and dilute acid based pretreatments. Bioresour Technol 101:8429–8438

    CAS  Article  Google Scholar 

  21. Chundawat SPS, Chang L, Gunawan C, Balan V, McMahan C, Dale BE (2012) Guayule as a feedstock for lignocellulosic biorefineries using ammonia fiber expansion (AFEX) pretreatment. Ind Crop Prod 37:486–492

    CAS  Article  Google Scholar 

  22. Culbertson A, Jin M, Sousa LDC, Dale BE, Balan V (2013) In-house cellulase production from AFEX pretreated corn stover using Trichoderma reesei RUT C-30. RSC Adv 3:25960–25969

    CAS  Article  Google Scholar 

  23. Da Costa Lopes AM, Joao KG, Bogel-Lukasik E, Roseiro LB, Bogel-Lukasik R (2013) Pretreatment and fractionation of wheat straw using various ionic liquids. J Agric Food Chem 61(33):7874–7882

    Article  CAS  Google Scholar 

  24. Dale BE, Ong RG (2012) Energy, wealth, and human development: why and how biomass pretreatment research must improve. AIChE J 28:893–898

    CAS  Google Scholar 

  25. Davison BH, Parks J, Davis MF, Donohoe BS (2013) Plant cell walls: basics of structure, chemistry, accessibility and the influence on conversion. In: Wyman CE (ed) Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. Wiley, New York, pp 23–38

    Google Scholar 

  26. Digman MF, Shinners KJ, Muck RE, Dien BS (2010) Pilot-scale on-farm pretreatment of perennial grasses with dilute acid and alkali for fuel ethanol production. ASABE 53(3):1007–1014

    CAS  Article  Google Scholar 

  27. Dudley B (2015) Oil. In: BP statistical review of world energy, BP Statistical Review of World Energy June 2015, Platts, London, pp 6–9

  28. Duque A, Manzanares P, Ballesteros I, Negro MJ, Oliva JM, Gonzalez A, Ballesteros M (2014) Sugar production from barley straw biomass pretreated by combined alkali and enzymatic extrusion. Bioresour Technol 158:262–268

    CAS  Article  Google Scholar 

  29. Eggeman T, Elander RT (2005) Process and economic analysis of pretreatment technologies. Bioresour Technol 96:2019–2025

    CAS  Article  Google Scholar 

  30. Fan LT, Gharpuray MM, Lee YH (1987) Cellulose hydrolysis biotechnology monographs. Springer, Berlin

    Google Scholar 

  31. Fenger D, Wegener G (1984) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin, pp 268–300

    Google Scholar 

  32. Foston M, Ragauskas AJ (2010) Changes in lignocellulosic supramolecular and ultrastructure during dilute acid pretreatment of populus and switchgrass. Biomass Bioenergy 34:1885–1895

    CAS  Article  Google Scholar 

  33. Galbe M, Zacchi G (2012) Pretreatment: the key to efficient utilization of lignocellulosic materials. Biomass Bioenergy 46:70–78

    CAS  Article  Google Scholar 

  34. Gavila L, Constanti M, Medina F (2015) D-lactic acid production from cellulose: dilute acid treatment of cellulose assisted by microwave followed by microbial fermentation. Cellulose 22:3089–3098

    CAS  Article  Google Scholar 

  35. George A, Brandt A, Tran K, Zahari SMSNS, Klein-Marcuschamer D, Sun N, Sathitsuksanoh N, Shi J, Stavila V, Parthasarathi R, Singh S, Holmes BM, Welton T, Simmons BA, Hallett JP (2015) Design of low-cost ionic liquids for lignocellulosic biomass pretreatment. Green Chem 17:1728–1734

    CAS  Article  Google Scholar 

  36. Giese EC, Pierozzi M, Dussan KJ, Chandel AK, Silva SSD (2013) Enzymatic saccharification of acid-alkali pretreated sugarcane bagasse using commercial enzyme preparations. J Chem Technol Biotechnol 88:1266–1272

    CAS  Article  Google Scholar 

  37. Gil N, Ferreira S, Amaral ME, Domingues FC, Duarte AP (2010) The influence of dilute acid pretreatment conditions on the enzymatic saccharification of Erica spp. for bioethanol production. Ind Crop Prod 32:29–35

    CAS  Article  Google Scholar 

  38. Grzenia DL, Schell DJ, Wickramasinghe SR (2012) Membrane extraction for detoxification of biomass hydrolysates. Bioresour Technol 111:248–254

    CAS  Article  Google Scholar 

  39. Gunny AAN, Arbain D, Daud MZM, Jamal P (2014) Synergistic action of deep eutectic solvents and cellulases for lignocellulosic biomass hydrolysis. Mater Res Innov 18:S6-65–S6-67

    Article  Google Scholar 

  40. Gupta VK, Potumarthi R, O’Donovan A, Kubicek CP, Sharma GD, Tuohy MG (2014) Chapter 2—bioenergy research: an overview on technological developments and bioresources. In: Gupta VK, Tuohy MG, Kubicek CP, Saddler J, Xu F (eds) Bioenergy research: advances and applications. Elsevier, Amsterdam, pp 23–47

    Google Scholar 

  41. Hadar Y (2013) Sources for lignocellulosic raw materials for the production of ethanol. In: Faraco V (ed) Lignocellulose conversion. Springer, Berlin, pp 21–38

    Google Scholar 

  42. Han L, Feng J, Zhang S, Ma Z, Wang Y, Zhang X (2012) Alkali pretreated of wheat straw and its enzymatic hydrolysis. Braz J Microbiol 43:53–61

    CAS  Article  Google Scholar 

  43. Hanim SS, Norazlina I, Noraishah A, Suhaila MHN (2012) Reducing sugar production from oil palm fronds and rice straw by acid hydrolysis. CHUSER 2012:642–645

    Google Scholar 

  44. Harmsen PFH, Hujigen WJJ, Lopez LMB, Bakker RRC (2010) Literature review of physical and chemical pretreatment processes for lignocellulosic biomass. Biosynergy

  45. Hassan S, Yasin T (2015) Role of tailored surface of activated carbon for adsorption of ionic liquids for environmental remediation. Int J Environ Sci Technol 12:2711–2722

    CAS  Article  Google Scholar 

  46. Ho DP, Ngo HH, Guo W (2014) A mini review on renewable sources for biofuel. Bioresour Technol 169:724–749

    Google Scholar 

  47. Ingale S, Joshi SJ, Gupte A (2014) Production of bioethanol using agricultural waste: banana pseudo stem. Braz J Microbiol 45:885–892

    CAS  Article  Google Scholar 

  48. Iyer PV, Wu ZW, Kim SB, Lee YY (1996) Ammonia recycled percolation process for pretreatment of herbaceous biomass. Appl Biochem Biotechnol 57(58):121–132

    Article  Google Scholar 

  49. Jennings EW, Schell DJ (2011) Conditioning of dilute-acid pretreated corn stover hydrolysate liquors by treatment with lime or ammonium hydroxide to improve conversion of sugars to ethanol. Bioresour Technol 102:1240–1245

    CAS  Article  Google Scholar 

  50. Ji S, Lee I (2013) Impact of cationic polyelectrolyte on the nanoshear hybrid alkaline pretreatment of corn stover: morphology and saccharification study. Bioresour Technol 133:45–50

    CAS  Article  Google Scholar 

  51. Jin G, Bierma T, Walker PM (2014) Low-heat, mild alkaline pretreatment of switchgrass for anaerobic digestion. J Environ Sci Health 49:565–574

    CAS  Article  Google Scholar 

  52. Kang KE, Park DH, Jeong GT (2013) Effects of NH4Cl and MgCl2 on pretreatment and xylan hydrolysis of miscanthus straw. Carbohydr Polym 92:1321–1326

    CAS  Article  Google Scholar 

  53. Kapu NS, Trajano HL (2014) Review of hemicellulose hydrolysis in softwoods and bamboo. Biofuels Bioprod Biorefin 8:857–870

    Article  CAS  Google Scholar 

  54. Karp EM, Resch MG, Donohoe BS, Ciesielski PN, O’Brien MH, Nill JE, Mittal A, Biddy MJ, Beckham GT (2015) Alkaline pretreatment of switchgrass. ACS Sustain Chem Eng 3:1479–1491

    CAS  Article  Google Scholar 

  55. Karr WE, Holtzapple T (2000) Using lime pretreatment to facilitate enzymatic hydrolysis of corn stover. Biomass Bioenergy 18:189–199

    Article  Google Scholar 

  56. Kim I, Han JI (2012) Optimization of alkaline pretreatment conditions for enhancing glucose yield of rice straw by response surface methodology. Biomass Bioenergy 46:210–217

    CAS  Article  Google Scholar 

  57. Kim TH, Lee YY, Sunwoo C, Kim JS (2005) Pretreatment of corn stover by low-liquid ammonia recycle percolation process. Appl Biochem Biotechnol 133:41–57

    Article  Google Scholar 

  58. Kim JW, Kim KS, Lee JS, Park SM, Cho HY, Park JC, Kim JS (2011) Two-stage pretreatment of rice straw using aqueous ammonia and dilute acid. Bioresour Technol 102:8992–8999

    CAS  Article  Google Scholar 

  59. Kim S, Park JM, Seo JW, Kim CH (2012) Sequential acid-/alkali-pretreatment of empty palm fruit bunch fiber. Bioresour Technol 109:229–233

    CAS  Article  Google Scholar 

  60. Kim SB, Lee SJ, Lee JH, Jung YR, Thapa LP, Kim JS, Um Y, Park C, Kim SW (2013) Pretreatment of rice straw with combined process using dilute sulfuric acid and aqueous ammonia. Biotechnol Biofuels 6:1–11

    CAS  Article  Google Scholar 

  61. Komolwanich T, Tatijarern P, Prasertwasu S, Khumsupan D, Chaisuwan T, Luengnaruemitchai A, Wongkasemjit S (2014) Comparative potentiality of Kans grass (Saccharum spontaneum) and Giant reed (Arundo donax) as lignocellulosic feedstocks for the release of monomeric sugars by microwave/chemical pretreatment. Cellulose 21:1327–1340

    CAS  Article  Google Scholar 

  62. Korosec K (2012) Chemical giant BASF invests in biomass-to-sugar startup. http://www.zdnet.com/article/chemical-giant-basf-invests-in-biomass-to-sugar-startup/. Accessed 15 July 2015

  63. Kotarska K, Swierczynska A, Dziemianowicz W (2015) Study on the decomposition of lignocellulosic biomass and subjecting it to alcoholic fermentation: study on the decomposition of lignocellulosic biomass. Renew Energy 75:389–394

    CAS  Article  Google Scholar 

  64. Kristiani A, Abimanyu H, Setiawan AH, Sudiyarmanto Aulia F (2013) Effect of pretreatment process by using diluted acid to characteristic of oil palm’s frond. Energy Procedia 32:183–189

    CAS  Article  Google Scholar 

  65. Kuglarz M, Gunnarsson IB, Svensson SE, Prade T, Johansson E, Angelidaki I (2014) Ethanol production from industrial hemp: effect of combined dilute acid/steam pretreatment and economic aspects. Bioresour Technol 163:236–243

    CAS  Article  Google Scholar 

  66. Kumar D, Murthy GS (2012) Life cycle assessment of energy and GHG emissions during ethanol production from grass straws using various pretreatment processes. Int J Life Cycle Assess 17:388–401

    CAS  Article  Google Scholar 

  67. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009a) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713−3729

    CAS  Article  Google Scholar 

  68. Kumar R, Mago G, Balan V, Wyman CE (2009b) Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresour Technol 100:3948–3962

    CAS  Article  Google Scholar 

  69. Kumar R, Satlewal A, Sharma S, Kagdiyal V, Gupta RP, Tuli DK, Malhotra RK (2014) Investigating jatropha prunings as a feedstock for producing fermentable sugars and chemical treatment for process optimization. J Renew Sustain Energy. doi:10.1063/1.4880215

    Google Scholar 

  70. Kumar AK, Parikh BS, Pravakar M (2015) Natural deep eutectic solvent mediated pretreatment of rice straw: bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue. Environ Sci Pollut Res. doi:10.1007/s11356-015-4780-4

    Google Scholar 

  71. Lee JW, Jeffries TW (2011) Efficiencies of acid catalysts in the hydrolysis of lignocelllosic biomass over a range of combined severity factors. Bioresour Technol 102:5884–5890

    CAS  Article  Google Scholar 

  72. Lim SL, Wu TY, Sim EYS, Lim PN, Clarke C (2012) Biotransformation of rice husk into organic fertilizer through vermicomposting. Ecol Eng 41:60–64

    Article  Google Scholar 

  73. Liu L, Sun J, Li M, Wang S, Pei H, Zhang J (2009) Enhanced enzymatic hydrolysis and structural features of corn stover by FeCl3 pretreatment. Bioresour Technol 100:5853–5858

    CAS  Article  Google Scholar 

  74. Liu L, Ju M, Li W, Hou Q (2013) Dissolution of cellulose from AFEX-pretreated zoysia japonica in AMIMCI with ultrasonic vibration. Carbohydr Polym 98:412–420

    CAS  Article  Google Scholar 

  75. Loow YL, Wu TY, Tan KA, Lim YS, Siow LF, Jahim JM, Mohammad AW, Teoh WH (2015) Recent advances in the application of inorganic salt pretreatment for transforming lignocellulosic biomass into reducing sugars. J Agric Food Chem 63:8349–8363

    CAS  Article  Google Scholar 

  76. Luo J, Cai M, Gu T (2013) Pretreatment of lignocellulosic biomass using green ionic liquids. In: Gu T (ed) Green biomass pretreatment for biofuels production. Springer, Netherlands, pp 127–153

    Google Scholar 

  77. Lynd LR, Wyman CE, Gerngross TU (1999) Biocommodity engineering. Biotechnol Progr 15:777–793

    CAS  Article  Google Scholar 

  78. Macrotrends.net (2016) Crude oil price history chart. http://www.macrotrends.net/1369/crude-oil-price-history-chart. Accessed 21 March 2016

  79. Maity SK (2015) Opportunities, recent trends and challenges of integrated biorefinery: part I. Renew Sust Energy Rev 43:1427–1445

    CAS  Article  Google Scholar 

  80. Manavalan T, Manavalan A, Heese K (2015) Characterization of lignocellulolytic enzymes from white-rot fungi. Curr Microbiol 70:485–498

    CAS  Article  Google Scholar 

  81. Marasabessy A, Kootstra AMJ, Sanders JPM, Weusthuis RA (2012) Dilute H2SO4-catalyzed hydrothermal pretreatment to enhance enzymatic digestibility of Jatropha curcas fruit hull for ethanol fermentation. Int J Energy Environ Eng 3:1–11

    CAS  Article  Google Scholar 

  82. Markiewicz M, Henke J, Brillowska-Dabrowska A, Stolte S, Luczak J, Jungnickel C (2014) Bacterial consortium and axenic cultures isolated from activated sewage sludge for biodegradation of imidazolium-based ionic liquid. Int J Environ Sci Technol 11:1919–1926

    CAS  Article  Google Scholar 

  83. McIntosh S, Vancov T (2011) Optmisation of dilute alkaline pretreatment for enzymatic saccharification of wheat straw. Biomass Bioenergy 35:3094–3103

    CAS  Article  Google Scholar 

  84. Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals and biorefinery concept. Prog Energy Combust 38:522–550

    CAS  Article  Google Scholar 

  85. Miyafuji H (2015) Application of ionic liquids for effective use of woody biomass. J Wood Sci 61:343–350

    CAS  Article  Google Scholar 

  86. Modenbach AA, Nokes SE (2012) The use of high-solids loadings in biomass pretreatment-a review. Biotechnol Bioeng 109(6):1430–1442

    CAS  Article  Google Scholar 

  87. Morden P, Observer S (2014) Group exploring technologies to commercial farm biomass to sugar process. http://www.bincanada.ca/index.php/whats-new/news-releases/98-group-exploring-technologies-to-commercial-farm-biomass-to-sugar-process. Accessed 15 July 2015

  88. Morikawa Y, Zhao X, Liu D (2014) Biological co-production of ethanol and biodiesel from wheat straw: a case of dilute acid pretreatment. RSC Adv 4:37878–37888

    CAS  Article  Google Scholar 

  89. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    CAS  Article  Google Scholar 

  90. Mushtaq Z, Imran M, Rehman S, Zahoor T, Ahmad RS, Arshad U (2014) Biochemical perspectives of xylitol extracted from indigenous agricultural by-product mung bean (Vigna radiata) hulls in a rat model. J Sci Food Agric 94:969–974

    CAS  Article  Google Scholar 

  91. Pang CH, Gaddipatti S, Tucker G, Lester E, Wu T (2014) Relationship between thermal behaviour of lignocellulosic components and properties of biomass. Bioresour Technol 172:312–320

    CAS  Article  Google Scholar 

  92. Papa G, Rodriquez S, George A, Schievano A, Orzi V, Sale KL, Singh S, Adani F, Simmons BA (2015) Comparison of different pretreatments for the production of bioethanol and biomethane from corn stover and switchgrass. Bioresour Technol 183:101–110

    CAS  Article  Google Scholar 

  93. Pappas IA, Koukoura Z, Tananaki C, Goulas C (2014) Effect of dilute acid pretreatment severity on the bioconversion efficiency of Phalaris aquatica L. lignocellulosic biomass into fermentable sugars. Bioresour Technol 166:395–402

    CAS  Article  Google Scholar 

  94. Peng H, Luo H, Jin S, Li H, Xu J (2014) Improved bioethanol production from corn stover by alkali pretreatment with a novel pilot-scale continuous microwave irradiation rector. Biotechnol Bioprocess Eng 19:493–502

    CAS  Article  Google Scholar 

  95. Plastics Technology (2012) Fermentable sugars from biomass are closer to commercial reality. http://www.ptonline.com/articles/fermentable-sugars-from-biomass-are-closer-to-commercial-reality. Accessed 15 July 2015

  96. Pol EVD, Bakker R, Zeeland AV, Garcia DS, Punt A, Eggink G (2015) Analysis of by-product formation and sugar monomerization in sugarcane bagasse pretreated at pilot plant scale: differences between autohydrolysis, alkaline and acid pretreatment. Bioresour Technol 181:114–123

    Article  CAS  Google Scholar 

  97. Procentese A, Johnson E, Orr V, Campanile AG, Wood JA, Marzocchella A, Rehmann L (2015) Deep eutectic solvent pretreatment and subsequent saccharification of corncob. Bioresour Technol 192:31–36

    CAS  Article  Google Scholar 

  98. Qing Q, Hu R, He Y, Zhang Y, Wang L (2014) Investigation of a novel acid-catalyzed ionic liquid pretreatment method to improve biomass enzymatic hydrolysis conversion. Appl Microbiol Biotechnol 98:5275–5286

    CAS  Article  Google Scholar 

  99. Rajan K, Carrier DJ (2014) Effect of dilute acid pretreatment conditions and washing on the production of inhibitors and on recovery of sugars during wheat straw enzymatic hydrolysis. Biomass Bioenergy 62:222–227

    CAS  Article  Google Scholar 

  100. Saha BC, Cotta MA (2008) Lime pretreatment, enzymatic saccharification and fermentation of rice hulls to ethanol. Biomass Bioenergy 32:971–977

    CAS  Article  Google Scholar 

  101. Saha BC, Nichols NN, Qureshi N, Kennedy GJ, Iten LB, Cotta MA (2015) Pilot scale conversion of wheat straw to ethanol via simultaneous saccharification and fermentation. Bioresour Technol 175:17–22

    CAS  Article  Google Scholar 

  102. Saleh M, Cuevas M, Garcia JF, Sanchez S (2014) Valorization of olive stones for xylitol and ethanol production from dilute acid pretreatment via enzymatic hydrolysis and fermentation by Pachysolen tannophilus. Biochem Eng J 90:286–293

    CAS  Article  Google Scholar 

  103. Salocks C, Kaley KB (2003) Sodium hydroxide. Tech Support Doc Toxicol Clandest Drug Labs Methamphetamine 1:1–9

    Google Scholar 

  104. Shak KPY, Wu TY, Lim SL, Lee CA (2014) Sustainable reuse of rice residues as feedstocks in vermicomposting for organic fertilizer production. Environ Sci Pollut Res 21:1349–1359

    CAS  Article  Google Scholar 

  105. Shekiro J III, Kuhn EM, Nagle NJ, Tucker MP, Elander RT, Schell DJ (2014) Characterization of pilot-scale dilute acid pretreatment performance using deacetylated corn stover. Biotechnol Biofuels 7:1–10

    Article  CAS  Google Scholar 

  106. Shupe AM, Liu S (2012) Ethanol fermentation from hydrolysed hot-water wood extracts by pentose fermenting yeasts. Biomass Bioenergy 39:31–38

    CAS  Article  Google Scholar 

  107. Silva SSD, Chandel AK (2012) Biomass hydrolysis for xylose recovery and detoxification. D-xylitol: fermentative production, application, and commercialization. Springer, Berlin, Heidelberg

    Google Scholar 

  108. Sindhu R, Kuttiraja M, Binod P, Sukumaran RK, Pandey A (2014a) Physicochemical characterization of alkali pretreated sugarcane tops and optimization of enzymatic saccharification using response surface methodology. Renew Energy 62:362–368

    CAS  Article  Google Scholar 

  109. Sindhu R, Kuttiraja M, Binod P, Sukumaran RK, Pandey A (2014b) Bioethanol production from dilute acid pretreated indian bamboo variety (Dendrocalamus sp.) by separate hydrolysis and fermentation. Ind Crop Prod 52:169–176

    CAS  Article  Google Scholar 

  110. Smith EL, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114:11060–11082

    CAS  Article  Google Scholar 

  111. Soudham VP, Raut DG, Anugwom I, Brandberg T, Larsson C, Mikkola JP (2015) Coupled enzymatic hydrolysis and ethanol fermentation: ionic liquid pretreatment for enhanced yields. Biotechnol Biofuels 8:135. doi:10.1186/s13068-015-0310-3

    Article  CAS  Google Scholar 

  112. Stoklosa RJ, Hodge DB (2015) Fractionation and improved enzymatic deconstruction of hardwoods with alkaline delignification. Bioenergy Res 8:1224–1234

    CAS  Article  Google Scholar 

  113. Strogen B, Horvath A (2013) Greenhouse gas emissions from the construction, manufacturing, operation, and maintenance of U.S. distribution infrastructure for petroleum and biofuels. J Infrastruct Syst 19:371–383

    Article  Google Scholar 

  114. Sudiyani Y, Styarini D, Triwahyuni E, Sudiyarmanto Sembiring KC, Aristiawan Y, Abimanyu H, Han MH (2013) Utilization of biomass waste empty fruit bunch fiber of palm oil for bioethanol production using pilot-scale unit. Energy Procedia 32:31–38

    CAS  Article  Google Scholar 

  115. Sun WL, Tao WY (2013) Simultaneous saccharification and fermentation of rice straw pretreated by a sequence of dilute acid and dilute alkali at high dry matter content. Energy Sources 35:741–752

    CAS  Article  Google Scholar 

  116. Tadesse H, Luque R (2011) Advances on biomass pretreatment using ionic liquids: an overview. Energy Environ Sci 4:3913–3929

    CAS  Article  Google Scholar 

  117. Tan HT, Dykes GA, Wu TY, Siow LF (2013) Enhanced xylose recovery from oil palm empty fruit bunch by efficient acid hydrolysis. Appl Biochem Biotechnol 170:1602–1613

    CAS  Article  Google Scholar 

  118. Toquero C, Bolado S (2014) Effect of four pretreatments on enzymatic hydrolysis and ethanol fermentation of wheat straw. Influence of inhibitors and washing. Bioresour Technol 157:68–76

    CAS  Article  Google Scholar 

  119. Trinh LTP, Lee YJ, Lee JW, Lee HJ (2015) Characterization of ionic liquid pretreatment and the bioconversion of pretreated mixed softwood biomass. Biomass Bioenergy 81:1–8

    CAS  Article  Google Scholar 

  120. Uppugundla N, Sousa LDC, Chundawat SPS, Yu X, Simmons B, Singh S, Gao X, Kumar R, Wyman CE, Dale BB, Balan V (2014) A comparative study of ethanol production using dilute acid, ionic liquid and AFEX™ pretreated corn stover. Biotechnol Biofuels 7:1–14

    Article  CAS  Google Scholar 

  121. Vancov T, McIntosh S (2011) Alkali pretreatment of cereal crop residues for second-generation biofuels. Energy Fuels 25:2754–2763

    CAS  Article  Google Scholar 

  122. Varrone C, Zhao L, Cao GL, Sheng T, Ren NQ (2013) Comparison of different pretreatment methods to increase hydrogen production from cornstalk. Adv Mater Res 724–725:216–221

    Article  CAS  Google Scholar 

  123. Vigier KDO, Chatel G, Jerome F (2015) Contribution of deep eutectic solvents for biomass processing: opportunities, challenges, and limitations. Chem Cat Chem 7:1250–1260

    CAS  Google Scholar 

  124. Wang Z (2012) Photonanocatalyst aided alkaline pretreatment and Raman spectroscopic characterization of corn stover biomass. Graduate Theses and Dissertation, Paper 12711, Iowa State University

  125. Wyman CE (1999) Biomass ethanol: technical progress, opportunities, and commercial challenges. Annu Rev Energy Environ 24:189–226

    Article  Google Scholar 

  126. Wyman CE, Dale BE, Elander RT, Holtzapple N, Ladsich MR, Lee YY (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96:1959–1966

    CAS  Article  Google Scholar 

  127. Xia S, Baker GA, Li H, Ravula S, Zhao H (2014) Aqueous ionic liquids and deep eutectic solvents for cellulosic biomass pretreatment and saccharification. RSC Adv 4:10586–10596

    CAS  Article  Google Scholar 

  128. Xu Z, Huang F (2014) Pretreatment methods for bioethanol production. Appl Biochem Biotechnol 174:43–62

    CAS  Article  Google Scholar 

  129. Xu GC, Ding JC, Han RZ, Dong JJ, Ni Y (2015) Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation. Bioresour Technol. doi:10.1016/j.biortech.2015.11.002

    Google Scholar 

  130. Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuel Bioprod Biorefin 2:26–40

    CAS  Article  Google Scholar 

  131. Yingying Z, Xiaohua L, Xin F, Yijin S, Xiaoyan J (2013) Properties and applications of choline-based deep eutectic solvents. Prog Chem 25:881–892

    Google Scholar 

  132. Yoon LW, Ngoh GC, Chua ASM, Hashim MA (2011) Comparison of ionic liquid, acid and alkali pretreatments for sugarcane bagasse enzymatic saccharification. J Chem Technol Biotechnol 86:1342–1348

    CAS  Article  Google Scholar 

  133. Yunus R, Salleh SF, Abdullah N, Biak DRA (2010) Effect of ultrasonic pretreatment on low temperature acid hydrolysis of oil palm empty fruit bunch. Bioresour Technol 101:9792–9796

    CAS  Article  Google Scholar 

  134. Zhang H, Wu S (2014) Dilute ammonia pretreatment of sugarcane bagasse followed by enzymatic hydrolysis to sugars. Cellulose 21:1341–1349

    CAS  Article  Google Scholar 

  135. Zhang R, Lu X, Sun Y, Wang X, Zhang S (2011) Modeling and optimization of dilute nitric acid hydrolysis on corn stover. J Chem Technol Biotechnol 86:306–314

    CAS  Article  Google Scholar 

  136. Zhang K, Chang J, Guan Y, Chen H, Yang Y, Jiang J (2013) Lignocellulosic biomass gasification technology in China. Renew Energy 49:175–184

    CAS  Article  Google Scholar 

  137. Zhang Z, Li W, Zhang G, Xu G (2014) Impact of pretreatment on solid state anaerobic digestion of yard waste for biogas production. World J Microb Biotechnol 30:547–554

    Article  CAS  Google Scholar 

  138. Zhao Y, Wang Y, Zhu JY, Ragauskas A, Deng Y (2008) Enhanced enzymatic hydrolysis of spruce by alkaline pretreatment at low temperature. Biotechnol Bioeng 99:1320–1328

    CAS  Article  Google Scholar 

  139. Zhao X, Peng F, Cheng K, Liu D (2009) Enhancement of the enzymatic digestibility of sugarcane bagasse by alkali-peracetic acid pretreatment. Enzyme Microb Technol 44:17–23

    CAS  Article  Google Scholar 

  140. Zhao J, Zhang H, Zheng R, Lin Z, Huang H (2011) The enhancement of pretreatment and enzymatic hydrolysis of corn stover by FeSO4 pretreatment. Biochem Eng J 56:158–164

    CAS  Article  Google Scholar 

  141. Zhao C, Ding W, Chen F, Cheng C, Shao Q (2014) Effects of compositional changes of AFEX-treated and H-AFEX-treated corn stover on enzymatic digestibility. Bioresour Technol 155:34–40

    CAS  Article  Google Scholar 

  142. Zheng Y, Pan Z, Zhang R (2009) Overview of biomass pretreatment for cellulosic ethanol production. Int J Agric Biol Eng 2(3):51–68

    CAS  Google Scholar 

  143. Zu S, Li WZ, Zhang M, Li Z, Wang Z, Jameel H, Chang HM (2014) Pretreatment of corn stover for sugar production using dilute hydrochloric acid followed by lime. Bioresour Technol 152:364–370

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The funding of this research is supported by Ministry of Higher Education, Malaysia under Long Term Research Grant Scheme (LRGS/2013/UKM-UKM/PT/01) and University of Malaya Research Grant (RP002D-13AET). In addition, the authors would like to thank Monash University Malaysia for providing Y.-L. Loow with a postgraduate scholarship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ta Yeong Wu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Loow, YL., Wu, T.Y., Md. Jahim, J. et al. Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment. Cellulose 23, 1491–1520 (2016). https://doi.org/10.1007/s10570-016-0936-8

Download citation

Keywords

  • Acid
  • Alkali
  • Biomass valorization
  • Cellulose
  • Hemicellulose
  • Lignin