, Volume 23, Issue 3, pp 1885–1897 | Cite as

Shear rheology of polylactide (PLA)–cellulose nanocrystal (CNC) nanocomposites

  • Davood Bagheriasl
  • Pierre J. CarreauEmail author
  • Bernard Riedl
  • Charles Dubois
  • Wadood Y. Hamad
Original Paper


A simple method for the preparation of polymer-cellulose nanocrystal (CNC) nanocomposite is shown to yield good dispersion of CNCs within a polylactide (PLA) matrix, which consequently resulted in the lowest rheological percolation threshold reported so far for polymer-CNC systems. The rheological behavior of the nanocomposites was determined in dynamic, transient, and steady-shear flow fields in the molten state. The complex viscosity and storage modulus of the nanocomposites increased markedly with CNC content, particularly at low frequencies; the samples were highly shear thinning and exhibited a transition from liquid- to solid-like behavior as the CNC concentration increased. Larger values for steady-state viscosity, yield stress, shear stress, and first normal stress difference were reported for the more concentrated nanocomposites. Also, pronounced overshoots in the transient start-up viscosity of the nanocomposites were observed. These results could be ascribed to the formation of an interconnected CNC network within the PLA matrix.


Nanocomposites Cellulose nanocrystals (CNCs) Polylactide Rheological properties Dispersion 



The authors acknowledge the financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC). The authors are also grateful to FPInnovations for providing the CNCs.


  1. Abbasi S, Carreau PJ, Derdouri A, Moan M (2009) Rheological properties and percolation in suspensions of multiwalled carbon nanotubes in polycarbonate. Rheol Acta 48:943–959. doi: 10.1007/s00397-009-0375-7 CrossRefGoogle Scholar
  2. Abitbol T, Johnstone T, Quinn TM, Gray DG (2011) Reinforcement with cellulose nanocrystals of poly(vinyl alcohol) hydrogels prepared by cyclic freezing and thawing. Soft Matter 7:2373–2379. doi: 10.1039/c0sm01172j CrossRefGoogle Scholar
  3. Arias A, Heuzey M-C, Huneault M, Ausias G, Bendahou A (2015) Enhanced dispersion of cellulose nanocrystals in melt-processed polylactide-based nanocomposites. Cellulose 22:483–498. doi: 10.1007/s10570-014-0476-z CrossRefGoogle Scholar
  4. Bagheriasl D, Carreau PJ, Dubois C, Riedl B (2015) Properties of polypropylene and polypropylene/poly(ethylene-co-vinyl alcohol) blend/CNC nanocomposites. Compos Sci Technol 117:357–363. doi: 10.1016/j.compscitech.2015.07.012 CrossRefGoogle Scholar
  5. Bendahou A, Kaddami H, Dufresne A (2010) Investigation on the effect of cellulosic nanoparticles’ morphology on the properties of natural rubber based nanocomposites. Eur Polym J 46:609–620. doi: 10.1016/j.eurpolymj.2009.12.025 CrossRefGoogle Scholar
  6. Bitinis N, Verdejo R, Bras J, Fortunati E, Kenny JM, Torre L, Lopez-Manchado MA (2013) Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites part I. Processing and morphology. Carbohydr Polym 96:611–620. doi: 10.1016/j.carbpol.2013.02.068 CrossRefGoogle Scholar
  7. Carreau PJ, DeKee DCR, Chhabra RP (1997) Rheology of polymeric systems: principles and applications. Hanser Publications, MunichGoogle Scholar
  8. Cassagnau P (2013) Linear viscoelasticity and dynamics of suspensions and molten polymers filled with nanoparticles of different aspect ratios. Polymer 54:4762–4775. doi: 10.1016/j.polymer.2013.06.012 CrossRefGoogle Scholar
  9. Cox WP, Merz EH (1958) Correlation of dynamic and steady flow viscosities. J Polym Sci 28:619–622. doi: 10.1002/pol.1958.1202811812 CrossRefGoogle Scholar
  10. Doraiswamy D, Mujumdar AN, Tsao I, Beris AN, Danforth SC, Metzner AB (1991) The Cox-Merz rule extended: A rheological model for concentrated suspensions and other materials with a yield stress. J Rheol 35:647–685. doi: 10.1122/1.550184 CrossRefGoogle Scholar
  11. Du F, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI (2004) Nanotube networks in polymer nanocomposites: rheology and electrical conductivity. Macromolecules 37:9048–9055. doi: 10.1021/ma049164g CrossRefGoogle Scholar
  12. Favier V, Chanzy H, Cavaille JY (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367. doi: 10.1021/ma00122a053 CrossRefGoogle Scholar
  13. Ghanbari A, Heuzey M-C, Carreau P, Ton-That M-T (2013) Morphological and rheological properties of PET/clay nanocomposites. Rheol Acta 52:59–74. doi: 10.1007/s00397-012-0667-1 CrossRefGoogle Scholar
  14. Goffin AL, Raquez JM, Duquesne E, Siqueira G, Habibi Y, Dufresne A, Dubois P (2011a) From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites. Biomacromolecules 12:2456–2465. doi: 10.1021/bm200581h CrossRefGoogle Scholar
  15. Goffin AL, Raquez JM, Duquesne E, Siqueira G, Habibi Y, Dufresne A, Dubois P (2011b) Poly(ɛ-caprolactone) based nanocomposites reinforced by surface-grafted cellulose nanowhiskers via extrusion processing: morphology, rheology, and thermo-mechanical properties. Polymer 52:1532–1538. doi: 10.1016/j.polymer.2011.02.004 CrossRefGoogle Scholar
  16. Hamad WY, Hu TQ (2010) Structure-process-yield interrelations in nanocrystalline cellulose extraction. Can J Chem Eng 88:392–402. doi: 10.1002/cjce.20298 Google Scholar
  17. Hong JS, Kim YK, Ahn KH, Lee SJ (2008) Shear-induced migration of nanoclay during morphology evolution of PBT/PS blend. J Appl Polym Sci 108:565–575. doi: 10.1002/app.27330 CrossRefGoogle Scholar
  18. Hu G, Zhao C, Zhang S, Yang M, Wang Z (2006) Low percolation thresholds of electrical conductivity and rheology in poly(ethylene terephthalate) through the networks of multi-walled carbon nanotubes. Polymer 47:480–488. doi: 10.1016/j.polymer.2005.11.028 CrossRefGoogle Scholar
  19. Kamal MR, Khoshkava V (2015) Effect of cellulose nanocrystals (CNC) on rheological and mechanical properties and crystallization behavior of PLA/CNC nanocomposites. Carbohydr Polym 123:105–114. doi: 10.1016/j.carbpol.2015.01.012 CrossRefGoogle Scholar
  20. Khalkhal F, Carreau PJ, Ausias G (2011) Effect of flow history on linear viscoelastic properties and the evolution of the structure of multiwalled carbon nanotube suspensions in an epoxy. J Rheol 55:153–175. doi: 10.1122/1.3523628 CrossRefGoogle Scholar
  21. Khoshkava V, Kamal MR (2014) Effect of cellulose nanocrystals (CNC) particle morphology on dispersion and rheological and mechanical properties of polypropylene/CNC nanocomposites. ACS Appl Mater Interfaces 6:8146–8157. doi: 10.1021/am500577e CrossRefGoogle Scholar
  22. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem 44:3358–3393. doi: 10.1002/anie.200460587 CrossRefGoogle Scholar
  23. Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem 50:5438–5466. doi: 10.1002/anie.201001273 CrossRefGoogle Scholar
  24. Letwimolnun W, Vergnes B, Ausias G, Carreau PJ (2007) Stress overshoots of organoclay nanocomposites in transient shear flow. J Nonnewton Fluid Mech 141:167–179. doi: 10.1016/j.jnnfm.2006.11.003 CrossRefGoogle Scholar
  25. Mabrouk AB, Magnin A, Belgacem MN, Boufi S (2011) Melt rheology of nanocomposites based on acrylic copolymer and cellulose whiskers. Compos Sci Technol 71:818–827. doi: 10.1016/j.compscitech.2011.01.012 CrossRefGoogle Scholar
  26. Mobuchon C, Carreau PJ, Heuzey M-C (2007) Effect of flow history on the structure of a non-polar polymer/clay nanocomposite model system. Rheol Acta 46:1045–1056. doi: 10.1007/s00397-007-0188-5 CrossRefGoogle Scholar
  27. Morandi G, Heath L, Thielemans W (2009) Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization (SI-ATRP). Langmuir ACS J Surf Colloids 25:8280–8286. doi: 10.1021/la900452a CrossRefGoogle Scholar
  28. Natale G, Heuzey MC, Carreau PJ, Ausias G, Férec J (2014) Rheological modeling of carbon nanotube suspensions with rod–rod interactions. AIChE J 60:1476–1487. doi: 10.1002/aic.14316 CrossRefGoogle Scholar
  29. Park W-I, Kang M, Kim H-S, Jin H-J (2007) Electrospinning of poly(ethylene oxide) with bacterial cellulose whiskers. Macromol Symp 249–250:289–294. doi: 10.1002/masy.200750347 CrossRefGoogle Scholar
  30. Pereda M, Kissi NE, Dufresne A (2014) Extrusion of polysaccharide nanocrystal reinforced polymer nanocomposites through compatibilization with poly(ethylene oxide). ACS Appl Mater Interfaces 6:9365–9375. doi: 10.1021/am501755p CrossRefGoogle Scholar
  31. Peresin MS, Habibi Y, Zoppe JO, Pawlak JJ, Rojas OJ (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromolecules 11:674–681. doi: 10.1021/bm901254n CrossRefGoogle Scholar
  32. Raquez JM, Murena Y, Goffin AL, Habibi Y, Ruelle B, DeBuyl F, Dubois P (2012) Surface-modification of cellulose nanowhiskers and their use as nanoreinforcers into polylactide: a sustainably-integrated approach. Compos Sci Technol 72:544–549. doi: 10.1016/j.compscitech.2011.11.017 CrossRefGoogle Scholar
  33. Ren J, Casanueva BF, Mitchell CA, Krishnamoorti R (2003) Disorientation kinetics of aligned polymer layered silicate nanocomposites. Macromolecules 36:4188–4194. doi: 10.1021/ma025703a CrossRefGoogle Scholar
  34. Sepehr M, Ausias G, Carreau PJ (2004) Rheological properties of short fiber filled polypropylene in transient shear flow. J Nonnewton Fluid Mech 123:19–32. doi: 10.1016/j.jnnfm.2004.06.005 CrossRefGoogle Scholar
  35. Shafiei-Sabet S, Hamad WY, Hatzikiriakos SG (2012) Rheology of nanocrystalline cellulose aqueous suspensions. Langmuir ACS J Surf Colloids 28:17124–17133. doi: 10.1021/la303380v CrossRefGoogle Scholar
  36. Sinha Ray S, Yamada K, Okamoto M, Ueda K (2003) New polylactide-layered silicate nanocomposites. 2. Concurrent improvements of material properties, biodegradability and melt rheology. Polymer 44:857–866. doi: 10.1016/S0032-3861(02)00818-2 CrossRefGoogle Scholar
  37. Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the Nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432. doi: 10.1021/bm801193d CrossRefGoogle Scholar
  38. Siqueira G, Abdillahi H, Bras J, Dufresne A (2010) High reinforcing capability cellulose nanocrystals extracted from Syngonanthus nitens (Capim Dourado). Cellulose 17:289–298. doi: 10.1007/s10570-009-9384-z CrossRefGoogle Scholar
  39. Siqueira G, Bras J, Follain N, Belbekhouche S, Marais S, Dufresne A (2013) Thermal and mechanical properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals. Carbohydr Polym 91:711–717. doi: 10.1016/j.carbpol.2012.08.057 CrossRefGoogle Scholar
  40. Zhang W, He X, Li C, Zhang X, Lu C, Zhang X, Deng Y (2014) High performance poly (vinyl alcohol)/cellulose nanocrystals nanocomposites manufactured by injection molding. Cellulose 21:485–494. doi: 10.1007/s10570-013-0141-y CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Research Center for High Performance Polymer and Composite Systems (CREPEC), Chemical Engineering DepartmentPolytechnique MontrealMontrealCanada
  2. 2.Département des sciences du bois et de la forêt, Faculté de foresterie, géographie et géomatiqueUniversité LavalQuebecCanada
  3. 3.FPInnovationsVancouverCanada

Personalised recommendations