, Volume 23, Issue 3, pp 1825–1846 | Cite as

A comparative guide to controlled hydrophobization of cellulose nanocrystals via surface esterification

  • Shane X. Peng
  • Huibin Chang
  • Satish Kumar
  • Robert J. Moon
  • Jeffrey P. Youngblood
Original Paper


Surface esterification methods of cellulose nanocrystals (CNC) using acid anhydrides, acid chlorides, acid catalyzed carboxylic acids, and 1′1-carbonyldiimidazole (CDI) activated carboxylic acids were evaluated with acetyl-, hexanoyl-, dodecanoyl-, oleoyl-, and methacryloyl-functionalization. Their grafting efficiency was investigated using Fourier-transform infrared spectroscopy and 13C solid state NMR spectroscopy. Acid anhydride and CDI were found to be the most applicable reagents to graft short and long chain aliphatic carbons, respectively. The preservation of structural morphology and crystallinity of grafted CNCs were confirmed using transmission electron microscopy and X-ray diffraction. The hydrophobicity of grafted CNCs was evaluated by dispersing them in organic solvents with different Hansen’s solubility parameters. The dispersibility of grafted CNCs in organic solvents was improved by using never-dried CNCs as source materials and keep CNCs wet in their washing solvents after grafting, thus increasing the solvency range to disperse CNCs.


Cellulose nanocrystals Esterification Hydrophobicity Hansen’s solubility parameters Dispersibility 



The authors would like to thank John Harwood from Purdue Interdepartmental NMR Facility for obtaining the 13C solid-state NMR spectra. The research was supported by the National Science Foundation IGERT sustainable electronic Grant #1144843-DGE and the Forest Products Laboratory under USDA Grant: 11-JV-11111129-118.

Supplementary material

10570_2016_912_MOESM1_ESM.docx (3.4 mb)
Supplementary material 1 (DOCX 3478 kb)


  1. Araki J, Mishima S (2014) Steric stabilization of “charge-free” cellulose nanowhiskers by grafting of poly(ethylene glycol). Molecules 20:169–184. doi: 10.3390/molecules20010169 CrossRefGoogle Scholar
  2. Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf A Physicochem Eng Asp 142:75–82. doi: 10.1016/S0927-7757(98)00404-X CrossRefGoogle Scholar
  3. Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054. doi: 10.1021/bm049300p CrossRefGoogle Scholar
  4. Belton PS, Tanner SF, Cartier N, Chanzy H (1989) High-resolution solid-state carbon-13 nuclear magnetic resonance spectroscopy of tunicin, an animal cellulose. Macromolecules 22:1615–1617. doi: 10.1021/ma00194a019 CrossRefGoogle Scholar
  5. Bendahou A, Hajlane A, Dufresne A et al (2014) Esterification and amidation for grafting long aliphatic chains on to cellulose nanocrystals: a comparative study. Res Chem Intermed. doi: 10.1007/s11164-014-1530-z Google Scholar
  6. Berlioz S, Molina-Boisseau S, Nishiyama Y, Heux L (2009) Gas-phase surface esterification of cellulose microfibrils and whiskers. Biomacromolecules 10:2144–2151. doi: 10.1021/bm900319k CrossRefGoogle Scholar
  7. Boujemaoui A, Mongkhontreerat S, Malmström E, Carlmark A (2015) Preparation and characterization of functionalized cellulose nanocrystals. Carbohydr Polym 115:457–464. doi: 10.1016/j.carbpol.2014.08.110 CrossRefGoogle Scholar
  8. Braun B, Dorgan JR (2009) Single-step method for the isolation and surface functionalization of cellulosic nanowhiskers. Biomacromolecules 10:334–341. doi: 10.1021/bm8011117 CrossRefGoogle Scholar
  9. Braun B, Dorgan JR, Hollingsworth LO (2012) Supra-molecular ecobionanocomposites based on polylactide and cellulosic nanowhiskers: synthesis and properties. Biomacromolecules 13:2013–2019. doi: 10.1021/bm300149w CrossRefGoogle Scholar
  10. Cao Y, Zavaterri P, Youngblood J et al (2015) The influence of cellulose nanocrystal additions on the performance of cement paste. Cem Concr Compos 56:73–83. doi: 10.1016/j.cemconcomp.2014.11.008 CrossRefGoogle Scholar
  11. Capadona JR, Van Den Berg O, Capadona LA et al (2007) A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. Nat Nanotechnol 2:765–769. doi: 10.1038/nnano.2007.379 CrossRefGoogle Scholar
  12. Capadona JR, Shanmuganathan K, Tyler DJ et al (2008) Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis. Science 319:1370–1374. doi: 10.1126/science.1153307 CrossRefGoogle Scholar
  13. Cetin NS, Tingaut P, Ozmen N et al (2009) Acetylation of cellulose nanowhiskers with vinyl acetate under moderate conditions. Macromol Biosci 9:997–1003. doi: 10.1002/mabi.200900073 CrossRefGoogle Scholar
  14. Chen S, Schueneman G, Pipes RB et al (2014) Effects of crystal orientation on cellulose nanocrystals–cellulose acetate nanocomposite fibers prepared by dry spinning. Biomacromolecules 15:3827–3835. doi: 10.1021/bm501161v CrossRefGoogle Scholar
  15. Diaz JA, Wu X, Martini A et al (2013) Thermal expansion of self-organized and shear-oriented cellulose nanocrystal films. Biomacromolecules 14:2900–2908. doi: 10.1021/bm400794e CrossRefGoogle Scholar
  16. Diaz JA, Ye Z, Wu X et al (2014) Thermal conductivity in nanostructured films: from single cellulose nanocrystals to bulk films. Biomacromolecules 15:4096–4101. doi: 10.1021/bm501131a CrossRefGoogle Scholar
  17. Dixon W, Schaefer J, Sefcik M et al (1982) Total suppression of sidebands in CPMAS C-13 NMR. J Magn Reson 49:341–345. doi: 10.1016/0022-2364(82)90199-8 Google Scholar
  18. Dong XM, Gray DG (1997) Effect of counterions on ordered phase formation in suspensions of charged rodlike cellulose crystallites. Langmuir 13:2404–2409. doi: 10.1021/la960724h CrossRefGoogle Scholar
  19. Dong S, Roman M (2007) Fluorescently labeled cellulose nanocrystals for bioimaging applications. J Am Chem Soc 129:13810–13811. doi: 10.1021/ja076196l CrossRefGoogle Scholar
  20. Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L et al (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65. doi: 10.1021/bm700769p CrossRefGoogle Scholar
  21. Espino-Pérez E, Domenek S, Belgacem N et al (2014) Green process for chemical functionalization of nanocellulose with carboxylic acids. Biomacromolecules 15:4551–4560. doi: 10.1021/bm5013458 CrossRefGoogle Scholar
  22. Eyley S, Thielemans W (2014) Surface modification of cellulose nanocrystals. Nanoscale 6:7764–7779. doi: 10.1039/c4nr01756k CrossRefGoogle Scholar
  23. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. doi: 10.1007/s10570-013-0030-4 CrossRefGoogle Scholar
  24. Fumagalli M, Sanchez F, Boisseau SM, Heux L (2013) Gas-phase esterification of cellulose nanocrystal aerogels for colloidal dispersion in apolar solvents. Soft Matter 9:11309. doi: 10.1039/c3sm52062e CrossRefGoogle Scholar
  25. Gårdebjer S, Bergstrand A, Idström A et al (2015) Solid-state NMR to quantify surface coverage and chain length of lactic acid modified cellulose nanocrystals, used as fillers in biodegradable composites. Compos Sci Technol 107:1–9. doi: 10.1016/j.compscitech.2014.11.014 CrossRefGoogle Scholar
  26. Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542. doi: 10.1039/c3cs60204d CrossRefGoogle Scholar
  27. Habibi Y, Dufresne A (2008) Highly filled bionanocomposites from functionalized polysaccharide nanocrystals. Biomacromolecules 9:1974–1980. doi: 10.1021/bm8001717 CrossRefGoogle Scholar
  28. Hamad WY, Hu TQ (2010) Structure-process-yield interrelations in nanocrystalline cellulose extraction. Can J Chem Eng. doi: 10.1002/cjce.20298 Google Scholar
  29. Hansen CM (2007) Hansen solubility parameters a user’s handbook, 2nd edn. CRC Press, Boca RatonCrossRefGoogle Scholar
  30. Hartig SM (2013) Basic image analysis and manipulation in ImageJ. In: Taylor GP (ed) Current protocols in molecular biology. Wiley, Hoboken, pp 1–12Google Scholar
  31. Hasani M, Cranston ED, Westman G, Gray DG (2008) Cationic surface functionalization of cellulose nanocrystals. Soft Matter 4:2238. doi: 10.1039/b806789a CrossRefGoogle Scholar
  32. Heinze T, Liebert T, Koschella A (2006) Esterification of polysaccharides. Springer-Verlag, Berlin. doi: 10.1007/3-540-32112-8
  33. Herrick FW, Casebier RL, Hamilton KJ, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci Appl Polym Symp 37:797–813Google Scholar
  34. Heux L, Chauve G, Bonini C (2000) Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir 16:8210–8212. doi: 10.1021/la9913957 CrossRefGoogle Scholar
  35. Hobbs SK, Monsky WL, Yuan F et al (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci USA 95:4607–4612. doi: 10.1073/pnas.95.8.4607 CrossRefGoogle Scholar
  36. Hussain MA, Liebert T, Heinze T (2004) Acylation of cellulose with N,N′-carbonyldiimidazole-activated acids in the novel solvent dimethyl sulfoxide/tetrabutylammonium fluoride. Macromol Rapid Commun 25:916–920. doi: 10.1002/marc.200300308 CrossRefGoogle Scholar
  37. Ibbett RN, Domvoglou D, Fasching M (2007) Characterisation of the supramolecular structure of chemically and physically modified regenerated cellulosic fibres by means of high-resolution Carbon-13 solid-state NMR. Polymer (Guildf) 48:1287–1296. doi: 10.1016/j.polymer.2006.12.034 CrossRefGoogle Scholar
  38. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85. doi: 10.1039/c0nr00583e CrossRefGoogle Scholar
  39. Jasmani L, Eyley S, Wallbridge R, Thielemans W (2013) A facile one-pot route to cationic cellulose nanocrystals. Nanoscale 5:10207–10211. doi: 10.1039/c3nr03456a CrossRefGoogle Scholar
  40. Junior de Menezes A, Siqueira G, Curvelo AAS, Dufresne A (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer (Guildf) 50:4552–4563. doi: 10.1016/j.polymer.2009.07.038 CrossRefGoogle Scholar
  41. Kim SH, Lee CM, Kafle K (2013) Characterization of crystalline cellulose in biomass: basic principles, applications, and limitations of XRD, NMR, IR, Raman, and SFG. Korean J Chem Eng 30:2127–2141. doi: 10.1007/s11814-013-0162-0 CrossRefGoogle Scholar
  42. Labet M, Thielemans W (2011) Improving the reproducibility of chemical reactions on the surface of cellulose nanocrystals: ROP of ε-caprolactone as a case study. Cellulose 18:607–617. doi: 10.1007/s10570-011-9527-x CrossRefGoogle Scholar
  43. Labet M, Thielemans W (2012) Citric acid as a benign alternative to metal catalysts for the production of cellulose-grafted-polycaprolactone copolymers. Polym Chem 3:679–684. doi: 10.1039/c2py00493c CrossRefGoogle Scholar
  44. Lee K-Y, Bismarck A (2012) Susceptibility of never-dried and freeze-dried bacterial cellulose towards esterification with organic acid. Cellulose 19:891–900. doi: 10.1007/s10570-012-9680-x CrossRefGoogle Scholar
  45. Lee KY, Quero F, Blaker JJ et al (2011) Surface only modification of bacterial cellulose nanofibres with organic acids. Cellulose 18:595–605. doi: 10.1007/s10570-011-9525-z CrossRefGoogle Scholar
  46. Lin N, Dufresne A (2014) Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale 6:5384–5393. doi: 10.1039/c3nr06761k CrossRefGoogle Scholar
  47. Lin N, Huang J, Chang PR et al (2011) Surface acetylation of cellulose nanocrystal and its reinforcing function in poly(lactic acid). Carbohydr Polym 83:1834–1842. doi: 10.1016/j.carbpol.2010.10.047 CrossRefGoogle Scholar
  48. Liu J-C, Moon RJ, Rudie A, Youngblood JP (2014) Mechanical performance of cellulose nanofibril film-wood flake laminate. Holzforschung 68:283–290. doi: 10.1515/hf-2013-0071 Google Scholar
  49. Liu J-C, Martin DJ, Moon RJ, Youngblood JP (2015) Enhanced thermal stability of biomedical thermoplastic polyurethane with the addition of cellulose nanocrystals. J Appl Polym Sci 132:41970. doi: 10.1002/app.41970 Google Scholar
  50. Majoinen J, Walther A, McKee JR et al (2011) Polyelectrolyte brushes grafted from cellulose nanocrystals using Cu-mediated surface-initiated controlled radical polymerization. Biomacromolecules 12:2997–3006. doi: 10.1021/bm200613y CrossRefGoogle Scholar
  51. Missoum K, Belgacem MN, Barnes J-P et al (2012) Nanofibrillated cellulose surface grafting in ionic liquid. Soft Matter 8:8338–8349. doi: 10.1039/c2sm25691f CrossRefGoogle Scholar
  52. Missoum K, Belgacem MN, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials (Basel) 6:1745–1766. doi: 10.3390/ma6051745 CrossRefGoogle Scholar
  53. Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. doi: 10.1039/c0cs00108b CrossRefGoogle Scholar
  54. Morandi G, Heath L, Thielemans W (2009) Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization (SI-ATRP). Langmuir 25:8280–8286. doi: 10.1021/la900452a CrossRefGoogle Scholar
  55. Navarro JRG, Conzatti G, Yu Y et al (2015) Multicolor fluorescent labeling of cellulose nanofibrils by click chemistry. Biomacromolecules. doi: 10.1021/acs.biomac.5b00083 Google Scholar
  56. Newman RH (2004) Homogeneity in cellulose crystallinity between samples of Pinus radiata wood. Holzforschung 58:91–96. doi: 10.1515/HF.2004.012 CrossRefGoogle Scholar
  57. Nielsen LJ, Eyley S, Thielemans W, Aylott JW (2010) Dual fluorescent labelling of cellulose nanocrystals for pH sensing. Chem Commun (Camb) 46:8929–8931. doi: 10.1039/c0cc03470c CrossRefGoogle Scholar
  58. Park S, Baker JO, Himmel ME et al (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10. doi: 10.1186/1754-6834-3-10 CrossRefGoogle Scholar
  59. Peng SX, Moon RJ, Youngblood JP (2014) Design and characterization of cellulose nanocrystal-enhanced epoxy hardeners. Green Mater 2:193–205. doi: 10.1680/gmat.14.00015 CrossRefGoogle Scholar
  60. Podsiadlo P, Choi S-Y, Shim B et al (2005) Molecularly engineered nanocomposites: layer-by-layer assembly of cellulose nanocrystals. Biomacromolecules 6:2914–2918. doi: 10.1021/bm050333u CrossRefGoogle Scholar
  61. Reiner RS, Rudie AW (2013) Process scale-up of cellulose nanocrystal production to 25 kg per batch at the forest products laboratory. In: Postek MT, Moon RJ, Rudie AW, Bilodeau MA (eds) Production and applications of Cellulose nanomaterials. TAPPI Press, Peachtree Corners, pp 21–24Google Scholar
  62. Reising AB, Moon RJ, Youngblood JP (2012) Effect of particle alignment on mechanical properties of neat cellulose nanocrystal films. J Sci Technol For Prod Process 2:32–41Google Scholar
  63. Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71. doi: 10.1107/S0021889869006558 CrossRefGoogle Scholar
  64. Sadeghifar H, Filpponen I, Clarke SP et al (2011) Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface. J Mater Sci 46:7344–7355. doi: 10.1007/s10853-011-5696-0 CrossRefGoogle Scholar
  65. Sassi JF, Chanzy H (1995) Ultrastructural aspects of the acetylation of cellulose. Cellulose 2:111–127. doi: 10.1007/BF00816384 CrossRefGoogle Scholar
  66. Sèbe G, Ham-Pichavant F, Ibarboure E et al (2012) Supramolecular structure characterization of cellulose II nanowhiskers produced by acid hydrolysis of cellulose I substrates. Biomacromolecules 13:570–578. doi: 10.1021/bm201777j CrossRefGoogle Scholar
  67. Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432. doi: 10.1021/bm801193d CrossRefGoogle Scholar
  68. Siqueira G, Bras J, Dufresne A (2010) New process of chemical grafting of cellulose nanoparticles with a long chain isocyanate. Langmuir 26:402–411. doi: 10.1021/la9028595 CrossRefGoogle Scholar
  69. Sugiyama J, Vuong R, Chanzy H (1991) Electron-diffraction study on the two crystalline phases occurring in native cellulose from an algal cell-wall. Macromolecules 24:4168–4175. doi: 10.1021/ma00014a033 CrossRefGoogle Scholar
  70. Thielemans W, Belgacem MN, Dufresne A (2006) Starch nanocrystals with large chain surface modifications. Langmuir 22:4804–4810. doi: 10.1021/la053394m CrossRefGoogle Scholar
  71. Tian C, Fu S, Habibi Y, Lucia LA (2014) Polymerization topochemistry of cellulose nanocrystals: a function of surface dehydration control. Langmuir 30:14670–14679. doi: 10.1021/la503990u CrossRefGoogle Scholar
  72. Vaca-Garcia C, Borredon ME, Gaseta A (2001) Determination of the degree of substitution (DS) of mixed cellulose esters by elemental analysis. Cellulose 8:225–231. doi: 10.1023/A:1013133921626 CrossRefGoogle Scholar
  73. Xiao L, Mai Y, He F et al (2012) Bio-based green composites with high performance from poly(lactic acid) and surface-modified microcrystalline cellulose. J Mater Chem 22:15732–15739. doi: 10.1039/c2jm32373g CrossRefGoogle Scholar
  74. Yuan H, Nishiyama Y, Wada M, Kuga S (2006) Surface acylation of cellulose whiskers by drying aqueous emulsion. Biomacromolecules 7:696–700. doi: 10.1021/bm050828j CrossRefGoogle Scholar
  75. Zhou Y, Fuentes-Hernandez C, Khan TM et al (2013) Recyclable organic solar cells on cellulose nanocrystal substrates. Sci Rep 3:1536. doi: 10.1038/srep01536 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Shane X. Peng
    • 1
  • Huibin Chang
    • 2
    • 3
  • Satish Kumar
    • 2
    • 3
  • Robert J. Moon
    • 1
    • 4
  • Jeffrey P. Youngblood
    • 1
  1. 1.School of Materials EngineeringPurdue UniversityWest LafayetteUSA
  2. 2.School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA
  3. 3.Renewable Bioproducts InstituteGeorgia Institute of TechnologyAtlantaUSA
  4. 4.Forest Products LaboratoryUSDA Forest ServiceMadisonUSA

Personalised recommendations