Abitbol T, Kloser E, Gray DG (2013) Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis. Cellulose 20:785–794
CAS
Article
Google Scholar
Ahola S, Turon X, Osterberg M et al (2008) Enzymatic hydrolysis of native cellulose nanofibrils and other cellulose model films: effect of surface structure. Langmuir 24:11592–11599. doi:10.1021/la801550j
CAS
Article
Google Scholar
Alves L, Medronho B, Antunes FE et al (2014) Unusual extraction and characterization of nanocrystalline cellulose from cellulose derivatives. J Mol Liq. doi:10.1016/j.molliq.2014.12.010
Google Scholar
Anderson SR, Esposito D, Gillette W et al (2014) Enzymatic preparation of nanocrystalline and microcrystalline cellulose. Tappi J 13:35–42
CAS
Google Scholar
Beltramino F, Roncero MB, Vidal T et al (2015a) Increasing yield of nanocrystalline cellulose preparation process by a cellulase pretreatment. Bioresour Technol 192:574–581. doi:10.1016/j.biortech.2015.06.007
CAS
Article
Google Scholar
Beltramino F, Valls C, Vidal T, Roncero MB (2015b) Exploring the effects of treatments with carbohydrases to obtain a high-cellulose content pulp from a non-wood alkaline pulp. Carbohydr Polym 133:302–312. doi:10.1016/j.carbpol.2015.07.016
CAS
Article
Google Scholar
Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169. doi:10.1016/j.carbpol.2013.01.033
CAS
Article
Google Scholar
Chen L, Wang Q, Hirth K et al (2015) Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose. doi:10.1007/s10570-015-0615-1
Google Scholar
Dong XM, Revol J-F, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32
CAS
Article
Google Scholar
Fahma F, Iwamoto S, Hori N et al (2010) Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB). Cellulose 17:977–985. doi:10.1007/s10570-010-9436-4
CAS
Article
Google Scholar
Fan JS, Li YH (2012) Maximizing the yield of nanocrystalline cellulose from cotton pulp fiber. Carbohydr Polym 88:1184–1188. doi:10.1016/j.carbpol.2012.01.081
CAS
Article
Google Scholar
Filson PB, Dawson-Andoh BE, Schwegler-Berry D (2009) Enzymatic-mediated production of cellulose nanocrystals from recycled pulp. Green Chem 11:1808. doi:10.1039/b915746h
CAS
Article
Google Scholar
Fraschini C, Chauve G, Le Berre J-F et al (2014) Critical discussion of light scattering and microscopy techniques for CNC particle sizing. Nord Pulp Pap Res J 29:31–40
CAS
Article
Google Scholar
French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index. Cellulose 20:583–588. doi:10.1007/s10570-012-9833-y
CAS
Article
Google Scholar
Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500. doi:10.1021/cr900339w
CAS
Article
Google Scholar
Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. BioResources 3:929–980
Google Scholar
Klemm D, Kramer F, Moritz S et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466. doi:10.1002/anie.201001273
CAS
Article
Google Scholar
Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325. doi:10.1016/j.eurpolymj.2014.07.025
CAS
Article
Google Scholar
Lu P, Hsieh Y-L (2010) Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydr Polym 82:329–336. doi:10.1016/j.carbpol.2010.04.073
Article
Google Scholar
Martínez-Sanz M, Vicente AA, Gontard N et al (2015) On the extraction of cellulose nanowhiskers from food by-products and their comparative reinforcing effect on a polyhydroxybutyrate-co-valerate polymer. Cellulose 22:535–551. doi:10.1007/s10570-014-0509-7
Article
Google Scholar
Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. doi:10.1039/c0cs00108b
CAS
Article
Google Scholar
Nelson ML, O’Connor RT (1964) Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in celluloses I and II. J Appl Polym Sci 8:1325–1341. doi:10.1002/app.1964.070080323
CAS
Article
Google Scholar
Neto WPF, Silvério HA, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from agro-industrial residue - Soy hulls. Ind Crops Prod 42:480–488. doi:10.1016/j.indcrop.2012.06.041
Article
Google Scholar
O’Connor RT, DuPré EF, Mitcham D (1958) Applications of infrared absorption spectroscopy to investigations of cotton and modified cottons part I: physical and crystalline modifications and oxidation. Text Res J 28:382–392. doi:10.1177/004051755802800503
Article
Google Scholar
Quintana E, Valls C, Vidal T, Roncero MB (2015a) Comparative evaluation of the action of two different endoglucanases. Part II: on a biobleached acid sulphite pulp. Cellulose 22:2081–2093. doi:10.1007/s10570-015-0631-1
CAS
Article
Google Scholar
Quintana E, Valls C, Vidal T, Roncero MB (2015b) Comparative evaluation of the action of two different endoglucanases. Part I: on a fully bleached, commercial acid sulfite dissolving pulp. Cellulose. doi:10.1007/s10570-015-0623-1
Google Scholar
Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5:1671–1677. doi:10.1021/bm034519+
CAS
Article
Google Scholar
Široký J, Blackburn RS, Bechtold T et al (2010) Attenuated total reflectance Fourier-transform infrared spectroscopy analysis of crystallinity changes in lyocell following continuous treatment with sodium hydroxide. Cellulose 17:103–115. doi:10.1007/s10570-009-9378-x
Article
Google Scholar
Spiridon I, Teaca C-A, Bodîrlau R (2010) Structural changes evidenced by FTIR spectroscopy in cellulosic materials after pre-treatment with ionic liquid and enzymatic hydrolysis. BioResources 6:400–413
Google Scholar
Tanaka R, Saito T, Ishii D, Isogai A (2014) Determination of nanocellulose fibril length by shear viscosity measurement. Cellulose 21:1581–1589. doi:10.1007/s10570-014-0196-4
CAS
Article
Google Scholar
Teixeira RSS, da Silva AS, Jang J-H et al (2015) Combining biomass wet disk milling and endoglucanase/β-glucosidase hydrolysis for the production of cellulose nanocrystals. Carbohydr Polym 128:75–81. doi:10.1016/j.carbpol.2015.03.087
CAS
Article
Google Scholar
Thielemans W, Warbey CR, Walsh DA (2009) Permselective nanostructured membranes based on cellulose nanowhiskers. Green Chem 11:531–537. doi:10.1039/b818056c
CAS
Article
Google Scholar
Valls C, Roncero MB (2009) Using both xylanase and laccase enzymes for pulp bleaching. Bioresour Technol 100:2032–2039. doi:10.1016/j.biortech.2008.10.009
CAS
Article
Google Scholar
Valls C, Colom JF, Baffert C et al (2010) Comparing the efficiency of the laccase–NHA and laccase–HBT systems in eucalyptus pulp bleaching. Biochem Eng J 49:401–407. doi:10.1016/j.bej.2010.02.002
CAS
Article
Google Scholar
Wang QQ, Zhu JY, Reiner RS et al (2012) Approaching zero cellulose loss in cellulose nanocrystal (CNC) production: recovery and characterization of cellulosic solid residues (CSR) and CNC. Cellulose 19:2033–2047. doi:10.1007/s10570-012-9765-6
CAS
Article
Google Scholar
Yanamala N, Farcas M (2014) In vivo evaluation of the pulmonary toxicity of cellulose nanocrystals: a renewable and sustainable nanomaterial of the future. ACS Sustain Chem Eng 2:1691–1698
CAS
Article
Google Scholar