Skip to main content
Log in

Dyeing and stiffness characteristics of cellulose-coated cotton fabric

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this study, the effect of cellulose coating on dyeing and other properties of cotton fabric was investigated. Three different reactive dyes were used for dyeing coated cotton fabric. The effect of cellulose coating on the dyeing properties of cotton fabric was studied by determining the K/S values of coated substrate at different concentrations of cellulose and dye. The K/S value decreased by 40–60 % with increasing coating concentration of cellulose from 0 to 5 %. The results show that the stiffness was increased from 0.16 to 2.50 N/m by coating of cellulose on the surface of cotton fabric. The stiffness was permanent as confirmed by ten multiple washings. Mechanical properties remained excellent. X-ray diffraction analysis showed that the amount of cellulose II increased slightly after solvent treatment. Fastness properties of cellulose-coated cotton fabrics against rubbing, washing, and perspiration were good.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ali S, Mughal MA, Shoukat U, Baloch MA, Kim SH (2015) Cationic starch (Q-TAC) pre-treatment of cotton fabric: influence on dyeing with reactive dye. Carbohydr Polym 117:271–278. doi:10.1016/j.carbpol.2014.09.064

    Article  CAS  Google Scholar 

  • Cook JG (1984) Handbook of textile fibres, natural fibres. Merrow, Cambridge

    Book  Google Scholar 

  • Dev VRG, Venugopal J, Sudha S, Deepika G, Ramakrishna S (2009) Dyeing and antimicrobial characteristics of chitosan treated wool fabrics with henna dye. Carbohydr Polym 75(4):646–650. doi:10.1016/j.carbpol.2008.09.003

    Article  CAS  Google Scholar 

  • Dollase WA (1986) Correction of intensities for preferred orientation in powder diffractometry: application of the March model. J Appl Crystallogr 19(4):267–272

    Article  CAS  Google Scholar 

  • Dupont AL (2003) Cellulose in lithium chloride/N,N-dimethylacetamide, optimisation of a dissolution method using paper substrates and stability of the solutions. Polymer 44(15):4117–4126. doi:10.1016/S0032-3861(03)00398-7

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896

    Article  CAS  Google Scholar 

  • Fridrichova L (2013) A new method of measuring the bending rigidity of fabrics and its application to the determination of the their anisotropy. Text Res J 83(9):883–892. doi:10.1177/0040517512467133

    Article  CAS  Google Scholar 

  • Gao Q, Shen X, Lu X (2011) Regenerated bacterial cellulose fibers prepared by the NMMO·H2O process. Carbohydr Polym 83(3):1253–1256. doi:10.1016/j.carbpol.2010.09.029

    Article  CAS  Google Scholar 

  • Gruneberger F, Kunniger T, Huch A, Zimmermann T, Arnold M (2015) Nanofibrillated cellulose in wood coatings: dispersion and stabilization of ZnO as UV absorber. Prog Org Coat 87:112–121

    Article  CAS  Google Scholar 

  • Gupta KM, Jiang J (2015) Cellulose dissolution and regeneration in ionic liquids: a computational perspective. Chem Eng Sci 121:180–189. doi:10.1016/j.ces.2014.07.025

    Article  CAS  Google Scholar 

  • Hes L, Loghin C (2009) Heat, moisture and air transfer properties of selected woven fabrics in wet state. J Fiber Bioeng Inf 2(3):141–149. doi:10.3993/jfbi12200901

    Article  Google Scholar 

  • Imran M, El-Fahmy S, Revol-Junelles A, Desobry S (2010) Cellulose derivative based active coatings: effects of nisin and plasticizer on physico-chemical and antimicrobial properties of hydroxypropyl methylcellulose films. Carbohydr Polym 81:119–225. doi:10.1016/j.carbpol.2010.02.021

    Article  CAS  Google Scholar 

  • Isobe N, Noguchi K, Nishiyama Y, Kimura S, Wada M, Kuga S (2012) Role of urea in alkaline dissolution of cellulose. Cellulose 20(1):97–103. doi:10.1007/s10570-012-9800-7

    Article  CAS  Google Scholar 

  • Jin H, Zha C, Gu L (2007) Direct dissolution of cellulose in NaOH/thiourea/urea aqueous solution. Carbohydr Res 342(6):851–858. doi:10.1016/j.carres.2006.12.023

    Article  CAS  Google Scholar 

  • Kimura A, Nagasawa N, Taguchi M (2014) Cellulose gels produced in room temperature ionic liquids by ionizing radiation. Radiat Phys Chem 103:216–221. doi:10.1016/j.radphyschem.2014.06.003

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393. doi:10.1002/anie.200460587

    Article  CAS  Google Scholar 

  • Lavoine N, Desloges I, Bras J (2014) Microfibrillated cellulose coatings as new release systems for active packaging. Carbohydr Polym 103:528–537. doi:10.1016/j.carbpol.2013.12.035

    Article  CAS  Google Scholar 

  • Leon K, Mery D, Pedreschi F, Leon J (2006) Color measurement in L∗a∗b∗ units from RGB digital images. Food Res Int 39(10):1084–1091. doi:10.1016/j.foodres.2006.03.006

    Article  Google Scholar 

  • Macrae CF, Bruno IJ, Chisholm JA, Edginston PR, McCabe P, Pidcock E (2008) Mercury CSD 2.0-new features for the visualization and investigation of crystal structures. J Appl Crystallogr 41(2):466–470. doi:10.1107/S0021889807067908

    Article  CAS  Google Scholar 

  • Molgaard SL, Henriksson M, Cardenas M, Svagan AJ (2014) Cellulose-nanofiber/polygalacturonic acid coatings with high oxygen barrier and targeted release properties. Carbohydr Polym 114:179–182. doi:10.1016/j.carbpol.2014.08.011

    Article  CAS  Google Scholar 

  • Nam S, French AD, Condon BD, Concha M (2016) Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohydr Polym 135:1–9

    Article  CAS  Google Scholar 

  • Raeisi M, Tajik H, Aliakbarlu J, Mirhosseini SH, Hosseini SMH (2015) Effect of carboxymethyl cellulose-based coatings incorporated with Zataria multiflora Boiss. essential oil and grape seed extract on the shelf life of rainbow trout fillets. Food Sci Tech 64:898–904

    CAS  Google Scholar 

  • Renfrew AHM, Taylor JA (1990) Cellulose reactive dyes: recent developments and trends. Rev Progr Color Relat Top 20:1–9. doi:10.1111/j.1478-4408.1990.tb00068.x

    Article  CAS  Google Scholar 

  • Shen L, Worrell E, Patel MK (2010) Environmental impact assessment of man-made cellulose fibres. Resour Conserv Recycl 55(2):260–274. doi:10.1016/j.resconrec.2010.10.001

    Article  Google Scholar 

  • Wang X, Xu M, Liu Z, Cao Y (2013) Impact of oxygen-reinforced alkali extraction on eucalyptus sulfate pulp for viscose fiber production. Bioresources 8(2):2558–2567

    Google Scholar 

  • Yuan Z, Zhang J, Jiang A, Lv W, Wang Y, Geng H, Wang J, Qin M (2015) Fabrication of cellulose self-assemblies and high-strength ordered cellulose films. Carbohydr Polym 117:414–421. doi:10.1016/j.carbpol.2014.10.003

    Article  CAS  Google Scholar 

  • Yue Y, Han J, Han G, Zhang Q, French AD, Wu Q (2015) Characterization of cellulose I/II hybrid fibers isolated from energycane bagasse during the delignification process: morphology, crystallinity and percentage estimation. Carbohydr Polym 133:438–447

    Article  CAS  Google Scholar 

  • Zhang P, Zhang L, Cheng S (2000) Effects of urea and sodium hydroxide on the molecular weight and conformation of α-(1 → 3)-d-glucan from Lentinusedodes in aqueous solution. Carbohydr Res 327:431–438

    Article  CAS  Google Scholar 

  • Zhang S, Li FX, Yu J, Hsieh YL (2010) Dissolution behaviour and solubility of cellulose in NaOH complex solution. Carbohydr Polym 81(3):668–674. doi:10.1016/j.carbpol.2010.03.029

    Article  CAS  Google Scholar 

  • Zhou J, Zhang L (2000) Solubility of cellulose in NaOH/urea aqueous solution. Polym J 32(10):866–870. doi:10.1295/polymj.32.866

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported under the Student Grant Scheme (SGS)-30162 by the Technical University of Liberec, Czech Republic. The authors acknowledge Dr. David Tavakoli of the School of Material Science and Engineering, Georgia Institute of Technology, USA for providing the X-ray diffraction pattern. The authors also acknowledge Dr. A. D. French of the Southern Regional Research Center, New Orleans, USA for providing the crystallographic information file for estimation of cellulose II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bandu Madhukar Kale.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kale, B.M., Wiener, J., Militky, J. et al. Dyeing and stiffness characteristics of cellulose-coated cotton fabric. Cellulose 23, 981–992 (2016). https://doi.org/10.1007/s10570-015-0847-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0847-0

Keywords

Navigation