Skip to main content
Log in

TEMPO nanofibrillated cellulose as template for controlled release of antimicrobial copper from PVA films

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

TEMPO nanofibrillated cellulose (TNFC) was used in different concentrations (0, 30, 50, and 70 wt%, all based on the mass of cellulose-copper hybrid material) as template to synthesize copper nanoparticles from copper sulfate; the resulting hybrid material was mixed with polyvinyl alcohol to prepare films. The final composite films were evaluated effectively in terms of their antimicrobial properties against Escherichia coli DH5α and in terms of the copper release from the films on deionized water. Copper concentration was determined by inductively coupled plasma optical emission spectroscopy. The results indicate that increasing the cellulosic material concentration will facilitate the control of copper release from the films. Data regarding to copper release rate was modeled by empirical models; the results indicate that copper release obeys the power law when TNFC is at a low concentration (≤30 %), and presents an exponential behavior when TNFC concentration increase up to 70 % (coefficient R2 is 0.9951).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

TEMPO:

2,2,6,6-tetramethylpiperidine-1-oxyl radical

TNFC:

TEMPO nanofibrillated cellulose

PVA:

Polyvinyl alcohol

CuNPs:

Copper nanoparticles

DI:

Deionized water

References

  • AOAC (1995) Official methods of analysis, 16th edn. In: Association of Official Analytical Chemists International, Gaithersburg, MD

  • Black JL, Jaczynski J (2006) Temperature effect on inactivation kinetics of Escherichia coli O157: H7 by electron beam in ground beef, chicken breast meat, and trout fillets. J Food Sci 71(6):M221–M227

    Article  CAS  Google Scholar 

  • Buonocore GG, Del Nobile MA, Panizza A, Corbo MR, Nicolais L (2003) A general approach to describe the antimicrobial agent release from highly swellable films intended for food packaging applications. J Control Release 90(1):97–107

    Article  CAS  Google Scholar 

  • Cady NC, Behnke JL, Strickland AD (2011) Copper-based nanostructured coatings on natural cellulose: nanocomposites exhibiting rapid and efficient inhibition of a multi-drug resistant wound pathogen, a. baumannii, and mammalian cell biocompatibility in vitro. Adv Funct Mater 21(13):2506–2514

    Article  CAS  Google Scholar 

  • Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D’Alessio M, Zambonin PG, Traversa E (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17(21):5255–5262

    Article  CAS  Google Scholar 

  • Duncan TV, Pillai K (2014) Release of engineered nanomaterials from polymer nanocomposites: diffusion, dissolution, and desorption. ACS Appl Mater Interfaces 7(1):2–19

    Article  CAS  Google Scholar 

  • Feng J, Shi Q, Li W, Shu X, Chen A, Xie X, Huang X (2014) Antimicrobial activity of silver nanoparticles in situ growth on TEMPO-mediated oxidized bacterial cellulose. Cellulose 21(6):4557–4567

    Article  CAS  Google Scholar 

  • Fernandes SCM, Freire CSR, Silvestre AJD, Neto CP, Gandini A, Berglund LA, Salmén L (2010) Transparent chitosan films reinforced with a high content of nanofibrillated cellulose. Carbohydr Polym 81(2):394–401

    Article  CAS  Google Scholar 

  • Hahn A, Brandes G, Wagener P, Barcikowski S (2011) Metal ion release kinetics from nanoparticle silicone composites. J Control Release 154(2):164–170

    Article  CAS  Google Scholar 

  • Hanahan D (1985) Techniques for transformation of E. coli. In: Glover DM (ed) DNA cloning, a practical approach, vol I. IRL Press, Oxford, pp 109–135

    Google Scholar 

  • Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85

    Article  CAS  Google Scholar 

  • Kumar R, Münstedt H (2005) Silver ion release from antimicrobial polyamide/silver composites. Biomaterials 26(14):2081–2088

    Article  CAS  Google Scholar 

  • Levanduski L, Jaczynski J (2008) Increased resistance of Escherichia coli O157: H7 to electron beam following repetitive irradiation at sub-lethal doses. Int J Food Microbiol 121(3):328–334

    Article  CAS  Google Scholar 

  • López-Carballo G, Higueras L, Gavara R, Hernández-Muñoz P (2012) Silver ions release from antibacterial chitosan films containing in situ generated silver nanoparticles. J Agric Food Chem 61(1):260–267

    Article  CAS  Google Scholar 

  • Raffi M, Mehrwan S, Bhatti TM, Akhter JI, Hameed A, Yawar W, ul Hasan MM (2010) Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Ann Microbial 60(1):75–80

    Article  CAS  Google Scholar 

  • Ritger PL, Peppas NA (1987) A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release 5(1):23–36

    Article  CAS  Google Scholar 

  • Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4(3):707–716

    Article  CAS  Google Scholar 

  • Silva AR, Unali G (2011) Controlled silver delivery by silver–cellulose nanocomposites prepared by a one-pot green synthesis assisted by microwaves. Nanotechnology 22(31):315605

    Article  CAS  Google Scholar 

  • Silva FM, Pinto RJ, Daniel-da-Silva AL, Trindade T (2014) Cationic release behavior of antimicrobial cellulose/silver nanocomposites. Cellulose 21(5):3551–3560

    Article  CAS  Google Scholar 

  • Smetana AB, Klabunde KJ, Marchin GR, Sorensen CM (2008) Biocidal activity of nanocrystalline silver powders and particles. Langmuir 24(14):7457–7464

    Article  CAS  Google Scholar 

  • Usman MS, Ibrahim NA, Shameli K, Zainuddin N, Yunus WM (2012) Copper nanoparticles mediated by chitosan: synthesis and characterization via chemical methods. Molecules 17:14928–14936

    Article  CAS  Google Scholar 

  • Usman MS, Zowalaty MEE, Shameli K, Zainuddin N, Salama M, Ibrahim NA (2013) Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int J Nanomed 8:4467–4479

    Google Scholar 

  • Xia X, Xie C, Cai S, Yang Z, Yang X (2006) Corrosion characteristics of copper microparticles and copper nanoparticles in distilled water. Corros Sci 48(12):3924–3932

    Article  CAS  Google Scholar 

  • Zhong T, Oporto GS, Jaczynski J, Tesfai AT, Armstrong J (2013) Antimicrobial properties of the hybrid copper nanoparticles-carboxymethyl cellulose. Wood Fiber Sci 45(2):215–222

    CAS  Google Scholar 

  • Zhong T, Oporto GS, Peng Y, Xie X, Gardner DJ (2015a) Drying cellulose-based materials containing copper nanoparticles. Cellulose. doi:10.1007/s10570-015-0646-7

    Google Scholar 

  • Zhong T, Oporto GS, Jaczynski J, Jiang C (2015b) Nanofibrillated cellulose and copper nanoparticles embedded in polyvinyl alcohol films for antimicrobial applications. Biomed Res Int 2015:1–8

    Article  Google Scholar 

Download references

Acknowledgments

Funding for this work has been provided by the USDA NIFA Grant No. 2013-34638-21481 “Development of novel hybrid cellulose nanocomposite film with potent biocide properties utilizing low quality Appalachian hardwoods” and NIFA McStennis WVA00098 “Efficient utilization of biomass for biopolymers in central Appalachia”. The authors also thank Dr. Ronald Sabo from USDA Forest Product Laboratory (FPL) for supplying TEMPO nanofibrillated cellulose gel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria S. Oporto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, C., Oporto, G.S., Zhong, T. et al. TEMPO nanofibrillated cellulose as template for controlled release of antimicrobial copper from PVA films. Cellulose 23, 713–722 (2016). https://doi.org/10.1007/s10570-015-0834-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0834-5

Keywords

Navigation