Skip to main content
Log in

Temperature-sensitive poly-NIPAm modified cellulose nanofibril cryogel microspheres for controlled drug release

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this article, we report a novel method for synthesizing temperature-sensitive polymer-modified cellulose nanofibril (CNF) cryogel microspheres. The pristine cryogel microspheres were first prepared using a spray-freeze dry method in the presence of a chemical crosslinker. Afterwards, NIPAm (N-isopropylacrylamide), a temperature-sensitive monomer, was polymerized and grafted to the cellulose cryogel microspheres through in situ free radical polymerization in the cryogel microreactor. The morphology, chemical structure, thermal sensitivity, bulk density and water uptake capacity of the hybrid microspheres were characterized. The CNF–PNIPAm hybrid microspheres exhibited a good temperature response at around 32 °C in water. The swelling behavior and drug release capability of CNF–PNIPAm hybrid microspheres were also investigated. The microspheres with PNIPAm exhibited a controllable drug release rate. The temperature effect on the drug release rate was also observed. These results indicated that porous CNF–PNIPAm hybrid microspheres could serve as a new type of material for controlled drug release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme. 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agnihotri SA, Aminabhavi TM (2006) Novel interpenetrating network chitosan-poly(ethylene oxide-g-acrylamide) hydrogel microspheres for the controlled release of capecitabine. Int J Pharm 324:103–115

    Article  CAS  Google Scholar 

  • Ayers MR, Hunt AJ (2001) Synthesis and properties of chitosan–silica hybrid aerogels. J Non-Cryst Solids 285:123–127

    Article  CAS  Google Scholar 

  • Bae YH, Okano T, Hsu R (1987) Thermo-sensitive polymers as on-off switches for drug release. Die Makromol Chem Rapid Commun 8:481–485

    Article  CAS  Google Scholar 

  • Cai H, Sharma S, Liu W, Mu W, Liu W, Zhang X, Deng Y (2014) Aerogel microspheres from natural cellulose nanofibrils and their application as cell culture scaffold. Biomacromolecules 15:2540–2547

    Article  CAS  Google Scholar 

  • Costa P, Lobo JMS (2001) Modeling and comparison of dissolution profiles. Eur J Pharm Sci 13:123–133

    Article  CAS  Google Scholar 

  • García-González CA, Alnaief M, Smirnova I (2011) Polysaccharide-based aerogels-promising biodegradable carriers for drug delivery systems. Carbohydr Polym 86:1425–1438

    Article  Google Scholar 

  • Gavillon R, Budtova T (2007) Aerocellulose: new highly porous cellulose prepared from cellulose-NaOH aqueous solutions. Biomacromolecules 9:269–277

    Article  Google Scholar 

  • Guenther U, Smirnova I, Neubert RHH (2008) Hydrophilic silica aerogels as dermal drug delivery systems–Dithranol as a model drug. Eur J Pharm Biopharm 69:935–942

    Article  CAS  Google Scholar 

  • Hebeish A, Farag S, Sharaf S, Shaheen TI (2014) Thermal responsive hydrogels based on semi interpenetrating network of poly (NIPAm) and cellulose nanowhiskers. Carbohydr Polym 102:159–166

    Article  CAS  Google Scholar 

  • Innerlohinger J, Weber HK, Kraft G (2006) Aerocellulose: aerogels and aerogel-like materials made from cellulose. Macromol Symp 244:126–135

    Article  CAS  Google Scholar 

  • Kadib AE, Molvinger K, Guimon C, Quignard F, Brunel D (2008) Design of stable nanoporous hybrid chitosan/titania as cooperative bifunctional catalysts. Chem Mater 20:2198–2204

    Article  Google Scholar 

  • Litschauer M, Neouze MA, Haimer E, Henniges U, Potthast A, Rosenau T, Liebner F (2011) Silica modified cellulosic aerogels. Cellulose 18:143–149

    Article  CAS  Google Scholar 

  • Lo CL, Lin KM, Hsiue GH (2005) Preparation and characterization of intelligent core-shell nanoparticles based on poly(D, L-laclitde)-g-gpoly(N-isopropyl acrylamide-co-methacrylic acid). J Controlled Release 104:477–488

    Article  CAS  Google Scholar 

  • Mehling T, Smirnova I, Guenther U, Neubert RHH (2009) Polysaccharide-based aerogels as drug carriers. J Non-Cryst Solids 355:2472–2479

    Article  CAS  Google Scholar 

  • Mikkonen KS, Parikka K, Ghafar A, Tenkanen M (2013) Prospects of polysaccharide aerogels as modern advanced food materials. Trends Food Sci Tech 34:124–136

    Article  CAS  Google Scholar 

  • Molvinger K, Quignard F, Brunel D, Boissiere M, Devoisselle J (2004) Porous chitosan-silica hybrid microspheres as a potential catalyst. Chem Mater 16:3367–3372

    Article  CAS  Google Scholar 

  • Novotna K, Havelka P, Sopuch T, Kolarova K, Vosmanska V, Lisa V, Svorcik V, Bacakova L (2013) Cellulose-based materials as scaffolds for tissue engineering. Cellulose 20:2263–2278

    Article  CAS  Google Scholar 

  • Risk S, Duru D, Gaudy D, Jacob M (1994) Natural polymer hydrophilic matrix: influencing drug release factors. Drug Dev Ind Pharm 16:2563–2574

    Article  Google Scholar 

  • Ritschel WA, Thompson GA, Lucker PW, Wetzelsberger K (1980) Biopharmaceutic evaluation of etofylline clofibrate and its drug formulation. Arzneim Forsch Drug Res 30:2020–2023

    CAS  Google Scholar 

  • Sai H, Fu R, Xing L, Xiang J, Li Z, Li F, Zhang T (2015) Surface modification of bacterial cellulose aerogels’ web-like skeleton for oil/water separation. ACS Appl Mater Interface 7:7373–7381

    Article  CAS  Google Scholar 

  • Smirnova I, Mamic J, Arlt W (2003) Adsorption of drugs on silica aerogels. Langmuir 19:8521–8525

    Article  CAS  Google Scholar 

  • Song W, Lima AC, Mano JF (2010) Bioinspired methodology to fabricate hydrogel spheres for multi-applications using superhydrophobic substrates. Soft Matter 6:5868–5871

    Article  CAS  Google Scholar 

  • Taşdelen B, Kayaman-Apohan N, Güven O, Baysal BM (2005) Preparation of poly (N-isopropylacrylamide/itaconic acid) copolymeric hydrogels and their drug release behavior. Radia Phys Chem 73:340–345

    Article  Google Scholar 

  • Ulker Z, Erkey C (2014) An emerging platform for drug delivery: aerogel based systems. J Control Release 177:51–63

    Article  CAS  Google Scholar 

  • Vilac N, Amorim R, Machado AF, Parpot P, Pereira MFR, Sardo M, Rocha J, Fonseca AM, Neves IC, Baltazar F (2013) Potentiation of 5-fluorouracil encapsulated in zeolites as drug delivery systems for in vitro models of colorectal carcinoma. Colloids Surf B 112:237–244

    Article  Google Scholar 

  • You YZ, Kalebaila KK, Brock SL (2008) Temperature-controlled uptake and release in PNIPAM-modified porous silica nanoparticles. Chem Mater 20:3354–3359

    Article  CAS  Google Scholar 

  • Zhang JT, Huang SW, Cheng SX, Zhuo RX (2004) Preparation and properties of poly (N-isopropylacrylamide)/poly (N-isopropylacrylamide) interpenetrating polymer networks for drug delivery. J Polym Sci Pol Chem 42:1249–1254

    Article  CAS  Google Scholar 

  • Zhang W, Zhang Y, Lu C, Deng Y (2012) Aerogels from crosslinked cellulose nano/micro-fibrils and their fast shape recovery property in water. J Mater Chem 22:11642–11650

    Article  CAS  Google Scholar 

  • Zhang X, Lin Z, Chen B, Zhang W, Sharma S, Gu W, Deng Y (2014) Solid-state flexible polyaniline/silver cellulose nanofibrils aerogel supercapacitors. J Power Sources 246:283–289

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulin Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Wu, W., Zhang, X. et al. Temperature-sensitive poly-NIPAm modified cellulose nanofibril cryogel microspheres for controlled drug release. Cellulose 23, 415–425 (2016). https://doi.org/10.1007/s10570-015-0799-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0799-4

Keywords

Navigation